Math, asked by ANONYMOUS7799, 2 months ago

if a=root 3 +1/root 3-1 and b = root 3 - 1/root 3 +1, then what is the value of a²+ab+b²​

Answers

Answered by rajratangarments8400
1

Answer:

this is answers and it's right

Attachments:
Answered by xSoyaibImtiazAhmedx
3

HERE ,

a =  \frac{ \sqrt{3 } + 1 }{ \sqrt{3 } - 1 }  \:  \:  \:  \:  \:  \:  \:  \:  \: b =  \frac{ \sqrt{3 } - 1 }{ \sqrt{3 } + 1 }

TO FIND : the value of a²+ab+b²

~~

 {a}^{2}  = ( { \frac{ \sqrt{3}  + 1}{ \sqrt{3} - 1 }  })^{2}  \\  =  \frac{ { \sqrt{3} }^{2} + 2 \sqrt{3}  \times 1 +  {1}^{2} }{ { \sqrt{3} }^{2} - 2 \sqrt{3}  \times 1 +  {1}^{2}  }  \\  =  \frac{3 + 2 \sqrt{3}  + 1}{3 - 2 \sqrt{3}  + 1}  \\  =  \frac{4 + 2 \sqrt{3} }{2 - 2 \sqrt{3} }  \\  =  \frac{2 +  \sqrt{3} }{1 -  \sqrt{3} }

ab =  \frac{( \sqrt{3}  - 1)}{( \sqrt{3} + 1) }  \times  \frac{( \sqrt{3}  + 1)}{ (\sqrt{3} - 1) }  \\  = 1

 {b}^{2}  = ( { \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 } })^{2}  \\  =  \frac{( { \sqrt{3 }  - 1)}^{2} }{ {( \sqrt{3} } + 1)^{2} }  \\  =  \frac{1 -  \sqrt{3} }{2 +\sqrt{3} }

SO,

a²+ab+b²

 \frac{2 + \sqrt{3} }{1 -  \sqrt{3} }  + 1 +  \frac{1 -  \sqrt{3} }{2 +  \sqrt{3} }  \\  =  \frac{ {(2 +  \sqrt{3)}  }^{2} + {(1 -  \sqrt{3)}(2 +  \sqrt{3})   +  {(1 -  \sqrt{3)} }^{2} }  }{(1 -  \sqrt{3)}(2 +  \sqrt{3})  }

Similar questions