Math, asked by sarikamehra33, 2 months ago

if a = root 3 - 2root 2 root 3 + root 2 / root 3 + root 2 and b = root 3 + root 2 / root 3 - root 2 , find the value of a square + b square - 5 ab

Answers

Answered by sandy1816
1

a =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\ b =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \\ a + b =  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  +  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \\  =  \frac{( { \sqrt{3} -  \sqrt{2}  })^{2} + ( { \sqrt{3} +  \sqrt{2}  })^{2}  }{( { \sqrt{3} })^{2}  - ( { \sqrt{2} })^{2} }  \\  =  \frac{2(( { \sqrt{3} })^{2} + ( { \sqrt{2} })^{2} ) }{3 - 2}  \\  = 2(3 + 2) \\  = 10 \\ ab = 1 \\ now \:  \:  \:  \:  {a}^{2}  +  {b}^{2}  - 5ab = ( {a + b})^{2}  - 7ab \\  = ( {10})^{2}  - 7 \times 1 \\  = 100 - 7 \\  = 93

Similar questions