Math, asked by lee5714, 1 month ago

if a = root a+2b - root a-2b / rooy a +2b -root a-2b , prove that bx²-az+b=0

Attachments:

Answers

Answered by anindyaadhikari13
9

\texttt{\textsf{\large{\underline{Correct Question}:}}}

If,

 \sf \implies x =  \dfrac{ \sqrt{a + 2b} +  \sqrt{a - 2b} }{ \sqrt{a + 2b} -  \sqrt{a - 2b} }

Prove that,

 \sf \implies b {x}^{2}  - ax + b = 0

\texttt{\textsf{\large{\underline{Solution}:}}}

Given:

 \sf \implies x =  \dfrac{ \sqrt{a + 2b} +  \sqrt{a - 2b} }{ \sqrt{a + 2b} -  \sqrt{a - 2b} }

We can also write it as:

 \sf \implies  \dfrac{x}{1} =  \dfrac{ \sqrt{a + 2b} +  \sqrt{a - 2b} }{ \sqrt{a + 2b} -  \sqrt{a - 2b} }

Applying componendo and dividendo, we get:

 \sf \implies  \dfrac{x + 1}{x - 1}  =  \dfrac{( \sqrt{a + 2b} +  \sqrt{a - 2b})  + (\sqrt{a + 2b} -  \sqrt{a - 2b} )}{( \sqrt{a + 2b} +  \sqrt{a - 2b})  - ( \sqrt{a + 2b} -  \sqrt{a - 2b}) }

 \sf \implies  \dfrac{x + 1}{x - 1}  =  \dfrac{2 \sqrt{a + 2b} }{2 \sqrt{a - 2b} }

 \sf \implies  \dfrac{x + 1}{x - 1}  =  \dfrac{ \sqrt{a + 2b} }{ \sqrt{a - 2b} }

Squaring both sides, we get:

 \sf \implies  \dfrac{ {(x + 1)}^{2} }{(x - 1)^{2} }  =  \dfrac{a + 2b }{a - 2b}

Again, applying componendo and dividendo, we get:

 \sf \implies  \dfrac{{(x + 1)}^{2}  +  {(x - 1)}^{2} }{ {(x + 1)}^{2} - (x - 1)^{2} }  =  \dfrac{(a + 2b) + (a - 2b) }{(a + 2b) - (a - 2b)}

On simplifying, we get:

 \sf \implies  \dfrac{ {x}^{2}  + 2x + 1 + {x}^{2}  - 2x + 1}{ {x}^{2} + 2x  +  1 - ( {x}^{2} - 2x +  1)}  =  \dfrac{2a}{4b}

 \sf \implies  \dfrac{2 {x}^{2}  + 2}{ {x}^{2} + 2x - 1 - ( {x}^{2} - 2x +  1)}  =  \dfrac{2a}{4b}

 \sf \implies  \dfrac{2 {x}^{2}  + 2}{ {x}^{2} + 2x - 1 - {x}^{2}  + 2x -  1}  =  \dfrac{a}{2b}

 \sf \implies  \dfrac{2 {x}^{2}  + 2}{4x}  =  \dfrac{a}{2b}

 \sf \implies  \dfrac{2 ({x}^{2}  + 1)}{4x}  =  \dfrac{a}{2b}

 \sf \implies  \dfrac{({x}^{2}  + 1)}{2x}  =  \dfrac{a}{2b}

 \sf \implies  \dfrac{{x}^{2}  + 1}{x}  =  \dfrac{a}{b}

On cross multiplying, we get:

 \sf \implies  b({x}^{2}  + 1)  =ax

 \sf \implies  b{x}^{2}  +b=ax

 \sf \implies  b{x}^{2}  - ax +b=0

Hence, Proved.!!

\texttt{\textsf{\large{\underline{Know More}:}}}

If a : b and c : d are two ratios such that a : b : : c : d. Then the following results hold true.

1. Invertendo.

 \sf \implies b : a :  : d : c

2. Alternendo.

 \sf \implies a : c :  : b : d

3. Componendo.

 \sf \implies (a + b) : b:  : (c + d) : d

4. Dividendo.

 \sf \implies (a  -  b) : b:  : (c - d) : d

5. Componendo and dividendo.

 \sf \implies (a + b) : (a - b):  : (c  +  d) :(c - d)

6. Convertendo.

 \sf \implies a : (a - b):  :c:(c - d)


mddilshad11ab: Perfect explaination ✔️
Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Given-} \\

 \sf{x =  \frac{ \sqrt{a  +  2b} +  \sqrt{a - 2b}  }{ \sqrt{a + 2b}  -  \sqrt{a - 2b} }  } \\

 \bf \underline{To\: find-} \\

 \sf{prove \: that :  \:  {bx}^{2} - ax + b = 0 } \\

 \bf \underline{Solution-} \\

\textsf{We have,}\\

 \sf{x =  \frac{ \sqrt{a  +  2b} +  \sqrt{a - 2b}  }{ \sqrt{a + 2b}  -  \sqrt{a - 2b} }  } \\

\textsf{The denominator is : √(a+2b) - √(a-2b)}\\

\textsf{We know that}\\

\textsf{The rationalising factor of : √(p + q) - √(p-q) = √(p+q) + √(p-q).}\\

\textsf{Therefore, the rationalising factor of: √(a+2b) - √(a-2b) = √(a+2b) + √(a-2b).}\\

\textsf{On, rationalising the denominator,we get}\\

 \sf{x =  \frac{ \sqrt{a  +  2b} +  \sqrt{a - 2b}  }{ \sqrt{a + 2b}  -  \sqrt{a - 2b} }  \times\frac{ \sqrt{a  +  2b} +  \sqrt{a - 2b}  }{ \sqrt{a + 2b}   +  \sqrt{a - 2b} }   } \\

 \sf{x =  \frac{  (\sqrt{a  +  2b} +  \sqrt{a - 2b})( \sqrt{a + 2b}    +  \sqrt{a - 2b}) }{( \sqrt{a + 2b}  -  \sqrt{a - 2b})( \sqrt{a + 2b}   +  \sqrt{a - 2b} )}  }  \\

 \sf{x =  \frac{  (\sqrt{a  +  2b} +  \sqrt{a - 2b} {)}^{2}  }{( \sqrt{a + 2b}  -  \sqrt{a - 2b})( \sqrt{a + 2b}   +  \sqrt{a - 2b} )}  }  \\

\textsf{★ Now, comparing the denominator with (a-b)(a+b), we get}\\

 \sf{ \:  \:  \:  \:  \: a =  \sqrt{a + 2b} \: and \: b =  \sqrt{a - 2b}  } \\

\textsf{Using identity (a+b)(a-b) = a²-b², we get}\\

 \sf{x =  \frac{  (\sqrt{a  +  2b} +  \sqrt{a - 2b} {)}^{2}  }{( \sqrt{a + 2b}  {)}^{2}  -  (\sqrt{a - 2b} {)}^{2} }  }  \\

 \sf{x =  \frac{  (\sqrt{a  +  2b} +  \sqrt{a - 2b} {)}^{2}  }{a + 2b - (a + 2b) }  }  \\

 \sf{x =  \frac{ a + 2b + a - 2b + 2 \sqrt{ {a}^{2} -  {4b}^{2}  }   }{a + 2b - (a + 2b) }  }  \\

  \Rightarrow\sf{x =  \frac{a +  \sqrt{ {a}^{2}  -  {4b}^{2} } }{2b} } \\

\Rightarrow\sf{2bx =a +  \sqrt{ {a}^{2} -  {4b}^{2}  } } \\

\Rightarrow\sf{2bx - a = \sqrt{ {a}^{2}  -  {4b}^{2} } } \\

\textsf{Squaring on both sides,we get}\\

 \sf{(2bx - a {)}^{2} =  {a}^{2} - 4 {b}^{2}   } \\

\Rightarrow\sf{ {4b}^{2} {x}^{2}  +   \cancel{{a}^{2}} - 4abx -  \cancel{ {a}^{2}} +  {4b}^{2}    =0} \\

\Rightarrow\sf{ {4b}^{2} {x}^{2}  - 4abx  +  {4b}^{2}    =0 \:  \: \Rightarrow\sf{4( {b}^{2} {x}^{2}  - abx  +  {4b}^{2}  )  =0} } \\

\Rightarrow\sf{{b}^{2} {x}^{2}  - abx  +  {4b}^{2}    =0 \:  \:  \:  \:  \: \Rightarrow\sf{b( {b}{x}^{2}  - ax  +  {b} )  =0} } \\

\Rightarrow\sf{{b}{x}^{2}  - ax  +  {b} =0} \\

 \bf \underline{Hence, proved.} \\

Similar questions