Math, asked by heebabijle6391, 1 year ago

If a = root2+1 /root2-1 and b=root2-1/root2+1 then find the value of a 2+ b2

Answers

Answered by mathdude200
8
please find the attachment
Attachments:
Answered by payalchatterje
1

Answer:

The value of  {a}^{2}  +  {b}^{2} is 34.

Step-by-step explanation:

Given,

a =  \frac{ \sqrt{2} + 1 }{ \sqrt{2}  - 1}

and

b =  \frac{ \sqrt{2} - 1 }{ \sqrt{2} + 1 }

So,

a + b =  \frac{ \sqrt{2} + 1 }{ \sqrt{2} - 1 }  +  \frac{ \sqrt{2} - 1 }{ \sqrt{2}  + 1}  \\  =  \frac{ (\sqrt{2 }  + 1) \times ( \sqrt{2 }  + 1) + ( \sqrt{2 } - 1)( \sqrt{2}     - 1) }{( \sqrt{2}  - 1)( \sqrt{2} + 1) }  \\  =  \frac{ {( \sqrt{2} + 1) }^{2}  +  {( \sqrt{2} - 1) }^{2} }{ ({ \sqrt{2}) }^{2} -  {1}^{2}  }  \\  =  \frac{ { \sqrt{2} }^{2} + 2 \sqrt{2}  +  {1}^{2}   +  { \sqrt{2} }^{2} - 2 \sqrt{2} + 1  }{2 - 1}  \\  =   \frac{2 {( \sqrt{2} )}^{2} + 2 }{1}  \\  = 2 \times 2 + 2 \\  = 4 + 2 \\  = 6

and,

a \times b =  \frac{ \sqrt{2}  + 1}{ \sqrt{2}  - 1}  \times  \frac{ \sqrt{2} - + 1 }{ \sqrt{2}  - 1}  \\  = 1

We know,

 {a}^{2}  +  {b}^{2}  \\  =  {(a + b)}^{2}  - 2ab \\  =  {6}^{2}  - 2 \times 1 \\  = 36 - 2 \\  = 34

Here applied formulas,

  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

This is a problem of Algebra.

Some important Algebra formulas.

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

#SPJ2

Similar questions