Math, asked by mohit491695, 3 months ago

If a=root5 - root3/root5 + root3 and b=root5 + root3/root5 - root3 find a+b+ab

Answers

Answered by rajeshkumar09297
0

Answer:

rrmemamfoeieejjdkkpp2ksj 3

Answered by richapariya121pe22ey
1

Step-by-step explanation:

a =  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }  \\ b =  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \\  \\ a + b + ab \\ =   \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }   + \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  + (\frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }   \times \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} } ) \\  =  \frac{ {( \sqrt{5}  -  \sqrt{3} )}^{2} +  {( \sqrt{5} +  \sqrt{3}  )}^{2}  }{( \sqrt{5} +  \sqrt{3})( \sqrt{5}   -  \sqrt{ 3}  )}   \times   \frac{( \sqrt{5} -  \sqrt{3} )( \sqrt{5}     +    \sqrt{3} )}{( \sqrt{5}  +   \sqrt{3} )( \sqrt{5}    -   \sqrt{3})}  \\  =   \frac{5 - 2 \sqrt{5}  \sqrt{3} - 3 + 5 + 2 \sqrt{5} \sqrt{3} + 3   }{ { (\sqrt{5} )}^{2} -  {( \sqrt{3} )}^{2}  }  \times 1 \\  =  \frac{5 +5}{5 - 3}  =  \frac{10}{2}  = 5

Similar questions