Math, asked by Ishan8464, 10 months ago

If a=sec theta-tan theta and b=sec theta +tan theta,then

Answers

Answered by harendrachoubay
4

If a=\sec \theta-\tan \theta and b=\sec \theta +\tan \theta, then b^2-a^2=4\sec \theta\tan \theta.

Step-by-step explanation:

We have,

a=\sec \theta-\tan \theta                                   ......... (1)

and b=\sec \theta +\tan \theta                            ......... (2)  

Squaring (1) and (2), and subtracting them, we get  

a^2-b^2=(\sec \theta-\tan \theta)^2-(\sec \theta+\tan \theta)^2  

a^2-b^2=(\sec^2 \theta+\tan^2 \theta-2\sec \theta\tan \theta)-(\\sec^\theta+\tan^2 \theta+2\sec \theta\tan \theta)  

a^2-b^2=\sec^2 \theta+\tan^2 \theta-2\sec \theta\tan \theta-\\sec^\theta-\tan^2 \theta-2\sec \theta\tan \theta  

a^2-b^2=-2\sec \theta\tan \theta-2\sec \theta\tan \theta

a^2-b^2=-4\sec \theta\tan \theta

b^2-a^2=4\sec \theta\tan \theta

If a=\sec \theta-\tan \theta and b=\sec \theta +\tan \theta, then b^2-a^2=4\sec \theta\tan \theta.

Answered by atulaind60
0

Answer:

najjahhajabnannsns

Step-by-step explanation:

if tan

Similar questions