Math, asked by ISHUKAKU7208, 9 months ago

If a sec@+b tan@=c and x and y are the roots of equation find tan(x+y)

Answers

Answered by saounksh
3

ANSWER

  • \boxed{ tan(x + y) =  \frac{2bc}{b^2 - c^2}}

GIVEN

  •  a sec(\theta) + b tan(\theta) = c

  • x and y are roots of the given equation.

TO FIND

  •  tan(x+y)

CALCULATION

\to a sec(\theta) + b tan(\theta) = c

\to a sec(\theta) = c - b tan(\theta)

\to a^2sec^2(\theta) = [c - b tan(\theta)]^2

\to a^2[1 + tan^2(\theta) = [c - b tan(\theta)]^2

\to a^2 + a^2tan^2(\theta)

 \:\:\:\:\:= c^2 - 2bctan(\theta) + b^2tan^2(\theta)

\to (a^2- b^2)tan^2(\theta) + 2bctan(\theta)

 \:\:\:\:\:+(a^2 - c^2) = 0

Since x and y are roots of this equation,  tan(x), tan(y) are roots of the equation

\to (a^2- b^2)z^2 + (2bc)z

 \:\:\:\:\:+(a^2 - c^2) = 0

So,

\to tan(x) + tan(y) = - \frac{2bc}{a^2- b^2}

\to tan(x)tan(y) = \frac{a^2 - c^2}{a^2- b^2}

Now we can calculate tan(x+y) as follows,

\to tan(x + y) =  \frac{tan(x) + tan(y)}{1 - tan(x)tan(y)}

\to tan(x + y) =  \frac{- \frac{2bc}{a^2- b^2}}{1 - \frac{a^2 - c^2}{a^2- b^2}}

\to tan(x + y) =  \frac{- 2bc}{a^2- b^2-(a^2 - c^2)}

\to tan(x + y) =  \frac{- 2bc}{- b^2 + c^2}

\to tan(x + y) =  \frac{2bc}{b^2 - c^2}

Similar questions