Math, asked by tabibbhuyian, 10 months ago

if a shopkeeper buy 8 mangoes at 5 dollars total and sell 6 mangoes at 5 dollar total
then. what is the percentage of PROFIT or loss?

Answers

Answered by mddilshad11ab
118

\sf\large{Given:}

  • The cost price of 8 mangoes=5dollars
  • The selling price of 6 mangoes=5dollars

\sf\large{To\: Find:}

  • The profit or loss percentage

\sf\large{Solution:}

\sf{\implies CP\:of\:8\: mangoes=5}

\sf{\implies CP\:of\:1\: mangoes=\dfrac{5}{8}}

\sf{\implies SP\:of\:6\: mangoes=5}

\sf{\implies SP\:of\:1\: mangoes=\dfrac{5}{6}}

  • Find the equavilent fraction of cp and sp
  • To make denominator same of the fraction
  • At first we take Lcm of both fraction

\sf{\implies lcm\:of\:8\:and\:6=24}

  • [Dividing here(24÷8=3) than multiple]

\sf{\implies CP=\dfrac{5}{8}=\dfrac{5*3}{8*3}=\dfrac{15}{24}}

  • [Dividing again(24÷6=4) than multiple]

\sf{\implies SP=\dfrac{5}{6}=\dfrac{5*4}{6*4}=\dfrac{20}{24}}

  • by comparing above the fraction
  • we get sp>cp ,so we get profit,here

\sf\purple{\implies P=SP-CP}

\sf{\implies P=\dfrac{5}{6}-\dfrac{5}{8}}

\sf{\implies p=\dfrac{20-15}{24}}

\sf\red{\implies p=\dfrac{5}{24}}

  • Now, calculating p% here

\sf\green{\implies P\%=\dfrac{P*100}{CP}}

\sf{\implies P\%=\dfrac{5}{24}\div \dfrac{5}{8}*100}

\sf{\implies P\%=\dfrac{5}{24}*\dfrac{8}{5}*100}

\sf{\implies P\%=\dfrac{5*8*100}{24*5}}

\sf{\implies P\%=\dfrac{4000}{120}}

\sf\purple{\implies P\%=33.33}

Hence,

  • The shopkeeper gain of 33.33% overall
Answered by AnIntrovert
15

Well we have 2 methods to solve it.

First, basic method

Second, advance method

First

Cost price = ₹12

Selling price = ₹8

As we can see, CP > SP, that means there is loss in the whole transaction.

Loss%= (CP - SP)/CP ×100

= (12 - 8)/12 ×100

= 4/12 ×100

= 1/3 × 100

= 33.33% Ans.

SECOND

CP > SP

12–8 = 4 and

4 is 1/3rd of 12 and

1/3 is 33.33%.Ans.

Thank you

Similar questions