Math, asked by teddybear56, 7 months ago

If a sin cube x+ b cos cube x=sin x cos x and a sin x = b cos x, then find a square + b square​

Answers

Answered by SujalSirimilla
1

\LARGE{\bf{\underline{\underline{GIVEN:-}}}}

  • \sf a sin^3 x+bcos^3x=sinxcosx
  • \sf asinx=bcosx

\LARGE{\bf{\underline{\underline{TO \ FIND:-}}}}

  • \sf a^2+b^2=?

\LARGE{\bf{\underline{\underline{SOLUTION:-}}}}

PART - 1.

\to \sf a sin^3 x+bcos^3x=sinxcosx

▣ This can be written as:

\to \sf sin^2(a sin x)+bcos^3x=sinxcosx

▣ Substitute \sf asinx=bcosx

\to \sf sin^2(bcosx)+bcos^3x=sinxcosx

▣ Take b cos x common.

\to \sf bcosx(sin^2+cos^2)=sinxcosx

▣ We know that \sf sin^2A+cos^2A=1. Therefore, we get:

\to \sf bcosx=sinxcosx

\to \sf \dfrac{bcosx}{sinxcosx}=1

▣ Further solving this, and cancelling cosx and transposing sinx to the RHS, we get  

b=sinx.

PART - 2.

\to \sf a sin^3 x+bcos^3x=sinxcosx

▣ This can be written as:

\to \sf a sin^3 x+cos^2(bcosx)=sinxcosx

▣ Substitute \sf asinx=bcosx

\to \sf a sin^3 x+cos^2(asinx)=sinxcosx

▣ Take a sin x common.

\to \sf asinx(sin^2+cos^2)=sinxcosx

▣ We know that \sf sin^2A+cos^2A=1. Therefore, we get:

\to \sf asinx=sinxcosx

\to \sf \dfrac{asinx}{sinxcosx}=1

▣ Further solving this, and cancelling sinx and transposing cosx to the RHS, we get a=cosx.

PART 3.

Now, we know that:

  • a=cosx.
  • b=sinx.

Then:

\sf \to a^2+b^2

Substitute the values.

\sf \to cos^2x+sin^2x

\leadsto \sf{\red{ 1}}

∴ a²+b²=1.

FUNDAMENTAL TRIGONOMETRIC IDENTITIES:

\boxed{\substack{\displaystyle \sf sin^2 \theta+cos^2 \theta = 1 \\\\  \displaystyle \sf 1+cot^2 \theta=cosec^2 \theta \\\\ \displaystyle \sf 1+tan^2 \theta=sec^2 \theta}}

Similar questions