if a sin square theta +b cos square theta=c then prove that: tan theta root c-b/a-c
Answers
Answer:-
Given:
a sin² θ + b cos² θ = c -- equation (1)
We know that,
sin² θ + cos² θ = 1
⟶ sin² θ = 1 - cos² θ
So,
⟶ a(1 - cos² θ) + b cos² θ = c
⟶ a - a cos² θ + b cos² θ = c
⟶ b cos² θ - a Cos² θ = c - a
Putting the value of cos² θ in equation (1) we get,
Now,
We know,
sin² θ/ cos² θ = tan² θ
So,
Hence, Proved.
Answer:-
Given:
a sin² θ + b cos² θ = c -- equation (1)
We know that,
sin² θ + cos² θ = 1
⟶ sin² θ = 1 - cos² θ
So,
⟶ a(1 - cos² θ) + b cos² θ = c
⟶ a - a cos² θ + b cos² θ = c
⟶ b cos² θ - a Cos² θ = c - a
\longrightarrow \sf \: { \cos }^{2} \theta = \dfrac{c - a}{b - a}⟶cos
2
θ=
b−a
c−a
Putting the value of cos² θ in equation (1) we get,
\begin{gathered} \longrightarrow \sf \: a \: { \sin}^{2} \theta + b \: { \cos }^{2} \theta = c \\ \\ \longrightarrow \sf \: a \: { \sin}^{2} \theta +b \times \frac{c - a}{b- a} = c \\ \\ \longrightarrow \sf \: a \: { \sin}^{2} \theta= c - \frac{b(c - a)}{b - a} \\ \\ \longrightarrow \sf \: a \: { \sin}^{2} \theta = \frac{c(b - a) - bc + ab}{b - a} \\ \\ \longrightarrow \sf \: { \sin }^{2} \theta = \frac{bc - ac - bc + ab}{b - a} \times \frac{1}{a} \\ \\ \longrightarrow \sf \: { \sin }^{2} \theta = \frac{a(b - c)}{b - a} \times \frac{1}{a} \\ \\ \longrightarrow \boxed{ \sf \: { \sin }^{2} \theta = \frac{b - c}{b - a} }\end{gathered}
⟶asin
2
θ+bcos
2
θ=c
⟶asin
2
θ+b×
b−a
c−a
=c
⟶asin
2
θ=c−
b−a
b(c−a)
⟶asin
2
θ=
b−a
c(b−a)−bc+ab
⟶sin
2
θ=
b−a
bc−ac−bc+ab
×
a
1
⟶sin
2
θ=
b−a
a(b−c)
×
a
1
⟶
sin
2
θ=
b−a
b−c
Now,
We know,
sin² θ/ cos² θ = tan² θ
So,
\begin{gathered} \: \longrightarrow \sf \: { \tan }^{2} \theta = \dfrac{ \frac{b - c}{b - a} }{ \frac{c - a}{b - a} } \\ \\ \: \longrightarrow \sf \: { \tan }^{2} \theta = \frac{b - c}{b - a} \times \frac{b - a}{c - a} \\ \\ \longrightarrow \sf \: { \tan }^{2} \theta = \frac{b - c}{c - a} \\ \\ \longrightarrow \sf \: { \tan }^{2} \theta = \frac{ - 1(c - b) }{ - 1(a - c)} \\ \\ \longrightarrow \boxed{ \sf \: { \tan } \theta = \sqrt{ \frac{c - b}{a - c} } }\end{gathered}
⟶tan
2
θ=
b−a
c−a
b−a
b−c
⟶tan
2
θ=
b−a
b−c
×
c−a
b−a
⟶tan
2
θ=
c−a
b−c
⟶tan
2
θ=
−1(a−c)
−1(c−b)
⟶
tanθ=
a−c
c−b