if a sin square theta + b cos square theta equal to m , b sin square alpha + cos square theta equal to n and a tan theta equal to b tan alpha prove that 1 ÷ n + 1 ÷ m equal to 1 ÷ a + 1 ÷ b
Answers
Answered by
1
given: sin^2+cos^2=m
b sin^2α+cos^2=n
tan=b tanα
prove: 1/n +1/m=1/a +1/b
=1/b sin^2α+cos^2+1/sin^2+cos^2
=sin^2+cos^2 + α (b sin^2α+cos^2)/sin^2+cos^2 * sin^2α+cos^2
=sin^2+cos^2 + α /(sin^2+cos^2)sin^2α+cos^2
=sin^2+cos^2 + α / sin^2α+cos^2
=sin^2/cos^2 +sin^2/cos^2
=tan^2+btanα^2
hence proved.
Similar questions