if a sin theta =1 and b tan theta =1 , find the relation between a and b
Answers
Answered by
0
Answer:
We have ,
L.H.S=
x
2
a
2
−
y
2
b
2
⇒L.H.S=
a
2
sin
2
θ
a
2
−
b
2
tan
2
θ
b
2
[∵x=asinθ,y=btanθ]
⇒L.H.S=
sin
2
θ
1
−
tan
2
θ
1
⇒L.H.S=cosec
2
θ−cot
2
θ [∵1+cot
2
θ=cosec
2
θ∴cosec
2
θ−cot
2
θ=1]
⇒ LHS =1= RHS
Hence, proved
Answered by
0
Answer:
sin theta=1/a
cos theta=√(1-sin^2 theta)=√{1-(1/a)^2}
=√{(a^2-1)}/a
b.tan theta=b.sin theta/cos theta
=b.(1/a)/[{a^2-1}/a]
=b/(a^2-1)=1
a^2-1=b
a^2-b=1 is the relationship
Similar questions