Math, asked by rattansingh83007, 11 months ago

if a sin theta + b cos theta is equal to C then prove that A cos theta minus B sin theta is equal to plus minus root a square + b square minus C square ​

Answers

Answered by cutiieepie
6

Answer:

Asinθ + bcosθ = c

taking square both sides,

(asinθ + bcosθ)² = c²

⇒a²sin²θ + b²cos²θ + 2absinθ.cosθ = c² --------(1)

Let acosθ - bsinθ = x

Squaring both sides

(acosθ - bsinθ)² = x²

⇒a²cos²θ + b²sin²θ -2absinθ.cosθ = x² ------(2)

Add equation (1) and (2),

a²sin²θ + b²cos²θ +2abinθ.cosθ + a²cos²θ + b²sin²θ -2absinθ.cosθ = c² + x²

⇒(a² + b²)cos²θ + (a² +b²)sin²θ = c² + x²

⇒(a² + b²)[sin²θ + cos²θ ] = c² + x²

⇒(a² + b²) = c² + x² [∵ sin²x + cos²x = 1 ]

⇒(a² + b² - c²) = x²

Take square root both sides,

\bold{\pm\sqrt{a^2 + b^2 - c^2} =x}

Hence, acosθ - bsinθ = \bold{\sqrt{a^2 + b^2 - c^2}}

Answered by Aryan0123
0

Answer:

Answer is in attachment

please mark as brainliest

Attachments:
Similar questions