Math, asked by swadipsantra, 11 months ago

If, a sin x = b cos x = 2c tan x/1-tan^2x.
then proved that ...
(a²-b^2)^2 = 4c^2(a^2+ b^2).​

Answers

Answered by ITzBrainlyGuy
28

ANSWER:

Given that

{ \sf{asin \: x = bcos \: x =  \dfrac{2ctan \: x}{1 -  {tan}^{2}x } }}

Taking the last term

{ \sf{ \frac{2c \: tanx}{1 -  {tan}^{2} x} = c \times  \frac{2tanx }{1 -  {tan}^{2}x } = c \: tan2x  }}

It is in the form of

2tanx/1 - tan²x = tan2x

To prove

(a² - b²)² = 4c²(a² + b²)

asinx = bcosx

{ \sf{ \frac{a}{b} = \frac{cos \: x}{sin \: x}   }}

Squaring on both sides

{ \sf{ \dfrac{ {a}^{2} }{ {b}^{2} } =  \dfrac{ {cos}^{2}  x}{ {sin}^{2}x }  }}

Apply componendo & dividendo

{ \sf{ \dfrac{ {a}^{2}  +  {b}^{2} }{ {a}^{2}  -  {b}^{2} } = \dfrac{ {cos}^{2} x +  {sin}^{2}x }{{cos}^{2}x -  {sin}^{2}  x }   }}

We know that

cos²x - sin²x = cos2x

cos²x + sin²x = 1

{ \sf{ \dfrac{ {a}^{2} +  {b}^{2}  }{ {a}^{2}  -  {b}^{2} } = \dfrac{1}{cos2x}   }}

Squaring on both sides

{ \sf{  {( \dfrac{{a}^{2}  +   {b}^{2} }{ {a}^{2} -  {b}^{2}  } )}^{2}   = {( \dfrac{1}{cos2x}) }^{2}  }}

{ \sf{ \frac{ {( {a}^{2}  -  {b}^{2}) }^{2} }{ {( {a}^{2}  -  {b}^{2}) }^{2} }  = \frac{ {sec}^{4}x. {b}^{2}  {cos}^{2} x }{4 {c}^{2}  {tan}^{2}x }  }}

Cross multiply

We get

{ \bf{( {a}^{2}  -  {b}^{2})^{2}  = 4 {c}^{2}( {a}^{2}  +  {b}^{2} )  }}

Hence proved

Similar questions