if A=sin28 teta+cos36 teta then (1)0≤A<1 (2)0≤A≤1 (3)0<A≤1 (4)3/4≤A≤1
Answers
Answered by
1
Step-by-step explanation:
A=sin
2
θ+cos
4
θ
=sin
2
θ+cos
2
θ.cos
2
θ
=sin
2
θ+cos
2
θ(1−sin
2
θ)
=sin
2
θ+cos
2
θ−sin
2
θcos
2
θ
=1−
4
1
(2sinθcosθ)
2
=1−
4
1
sin
2
2θ
Min.(sin
2
2θ)=0
Max.(sin
2
2θ)=1
Min.(A)=1−
4
1
.Max(sin
2
2θ)
−
4
1
.1=
4
3
Max.(A)=1−
4
1
.Min.(sin
2
2θ)
=1−
4
1
.0=1
∴
4
3
≤A≤1
Similar questions