Math, asked by meenu4204, 8 months ago

if a= sinA+cosA and b= sin^3A + cos^3A then prove that 3a-2b=a^3

Answers

Answered by mishradeeksha273
1

Step-by-step explanation:

i hope you are satisfied with my solution

Attachments:
Answered by Anonymous
1

\huge\boxed{Answer}

Here ,

a = SinA + CosA

b = Sin³A + Cos³A

Now ,

3a - 2b

3(SinA + CosA) - 2(Sin³A + Cos³A)

3(SinA + CosA) - 2(SinA + CosA)(1 - SinA*CosA)

3(SinA + CosA) - 2(SinA - Sin²A*CosA + CosA

- Cos²A*SinA)

3SinA + 3CosA - 2SinA + 2Sin²A*CosA - 2CosA

+ 2Cos²A*SinA

= (SinA + CosA) + 2SinA*CosA(SinA + CosA)

= (SinA + CosA) (1 + 2SinA*CosA)

= (SinA + CosA) (Sin²A + Cos²A + 2SinA*CosA)

= (SinA + CosA) (SinA + CosA)²

= (SinA + CosA)³

=

Hence proof

Similar questions
Math, 4 months ago