Math, asked by trisha2762, 6 months ago

If a sphere of radius 2r has the same volume as that of a cone with circular base of radius is r, the find the height ofthe cone.

Answers

Answered by Saby123
4

Solution :

Volume of Sphere = Volume of Cone

We know that volume of Sphere is 4/3 π r² .

Here, the radius of the sphere is 2r .

Thus the required volume of the sphere becomes -

=> 4/3 × π × 8 r⅗

=> 32/3 π r³ .

The volume of a cone is ⅓ π r² h .

Hence , we can say that :

32/3 π r³ = ⅓ π r² h .

⅓ gets cancelled from both sides

=> 32 π r³ = π r² h

=> 32 r³ = r² h

=> 32 r = h .

Hence, the required height of the cone is 32 r .

This is the answer

_____________________________________

Answered by OfficialPk
50

 \: \: \boxed{\boxed{\sf{\mapsto \: Firstly \: let \: us \: understand}}}

\mathsf\green{Volume \: of \: cone \: = \: \frac{1}{3}π {r}^{2}h}

\mathsf\green{Volume \: of \: sphere \: = \: \frac{4}{3}π{r}^{3}}

\mathsf\red{Given}

\mathsf\red{Volume \: of \: cone \: = \: Volume \: of \: sphere}

\mathsf{Radius \: of \: sphere \: = \: 2r}

\mathsf{Radius \: of \: cone \: = \: r}

\mathsf{Volume \: of \: sphere \: = \: \frac{4}{3}π{(2r)}^{3}}

\mathsf{Volume \: of \: sphere \: = \: \frac{32}{3}π{r}^{3}}

\mathsf{Volume \: of \: cone \: = \: \frac{1}{3}π {r}^{2}h}

\mathsf\red{Volume \: of \: cone \: = \: Volume \: of \: sphere}

\mathsf{\frac{1}{3}π {r}^{2}h \: = \: \frac{32}{3}π{r}^{3}}

\mathsf{π {r}^{2}h \: = \: 32π{r}^{3}}

\mathsf{h \: = \: 32r}

\mathsf\red{\therefore \: the \: height \: of \: cone \: 32r}

Similar questions