Math, asked by rajbirsohi552, 5 months ago

if a square +1/a square =27 than the value of a square a-1/a is​

Answers

Answered by Bidikha
7

Given -

 {a}^{2}  +  \frac{1}{ {a}^{2} }  = 27

To find -

the \: value \: of \: a -  \frac{1}{a}

Solution -

 = a -  \frac{1}{a}

By Squaring,

 \implies (a -  \frac{1}{a} )^{2}  =  {a}^{2}  - 2 \times a \times  \frac{1}{a}  +  \frac{1}{ {a}^{2} }

 \implies  {(a -  \frac{1}{a}) }^{2}  =   {a}^{2}  - 2 +  \frac{1}{ {a}^{2} }

 \implies  {(a -  \frac{1}{a}) }^{2}  =  {a}^{2}  +  \frac{1}{ {a}^{2} }  - 2

 \implies  {(a -  \frac{1}{a} )}^{2}  = 27 - 2

 \implies  {(a -  \frac{1}{a} )}^{2}  = 25

 \implies {(a -  \frac{1}{a} )}  = \frac{ + }{ - }  25

 \implies  {(a -  \frac{1}{a} )} =  \frac{ + }{ - } 5

Similar questions