if a square + 1 by equal to 4 find the value of 2 a cube + 1 + 2 a cube
Answers
Answered by
2
Given : a² + 1/a² = 4
To Find : (2a)³ + (2/a)³
Solution:
a² + 1/a² = 4
=> a² + 1/a² + 2a(1/a) = 4 + 2a(1/a)
=> (a + 1/a)² = 4 + 2
=> a + 1/a = √6
=> a² + 1/a² - 2a(1/a) = 4 - 2a(1/a)
=> (a - 1/a)² = 4 - 2
=> a - 1/a = √2
a + 1/a = √6
a - 1/a = √2
=> 2a = √6 + √2
=> 2/a = √6 - √2
(2a)³ + (2/a)³ = (√6 + √2)³ + (√6 - √2)³
x³ + y³ = (x + y)(x² + y² - xy)
x= √6 + √2 , y = √6 - √2
= (√6 + √2 + √6 - √2) ( (√6 + √2)² + (√6 - √2)² - (√6 + √2) (√6 - √2))
= 2√6(6 + 2 + 2√12 + 6 + 2 - 2√12 - (6 - 2))
= 2√6(16 - 4)
= 2√6(12)
= 24√6
Learn More:
If a + b + c = 1, a2+b2+c2=9, a3+b3+c3=1 find 1/a + 1/b + 1/c
https://brainly.in/question/11392304
Answered by
1
Answer:
hi friend
Step-by-step explanation:
do it by urself
Similar questions