Math, asked by manasvipandey806, 8 months ago

If a square-3a-1=0, find the value of a square+1/a square​

Answers

Answered by Darkrai14
5

ᏀᏆᏙᎬΝ:-

\sf a^2 - 3a - 1 = 0

Ꭲᝪ ᖴᏆᑎᗞ:-

\sf a^2 + \dfrac{1}{a^2}

ꌗꂦ꒒ꀎ꓄ꀤꂦꈤ:-

\sf a^2 - 3a - 1 = 0

Dividing the equation by a,

\sf \dfrac{a^2}{a} - \dfrac{3a}{a} - \dfrac{1}{a} = \dfrac{0}{a}

\sf \implies a- 3 - \dfrac{1}{a} = 0

\sf \implies a - \dfrac{1}{a} = 3

\qquad\qquad\qquad\bigstar\boxed{\bf a - \dfrac{1}{a} = 3}\bigstar

__________________________

We know that,

\qquad\qquad\qquad\bigstar\boxed{\sf (a-b)^2 = a^2+b^2-2ab}\bigstar

Using this identity,

\sf \implies \Bigg ( a - \dfrac{1}{a} \Bigg )^2 = (a)^2 + \Bigg ( \dfrac{1}{a} \Bigg )^2 - 2 \times a \times \dfrac{1}{a}

\sf \implies ( 3 )^2 = a^2 + \dfrac{1}{a^2}- 2

\sf \implies 9=a^2 + \dfrac{1}{a^2} - 2

\sf \implies 9+2=a^2 + \dfrac{1}{a^2}

\sf \implies 11=a^2 + \dfrac{1}{a^2}

\qquad\qquad\qquad\bigstar\boxed{\bf a^2 +\dfrac{1}{a^2}= 11}\bigstar

\mathcal{HOPE \ IT \ HELPS}

Similar questions