Math, asked by sreetanvee5, 7 months ago

if a square -5a +1 =and ais not equal to 0 then find a-1/a and a+1/a​

Answers

Answered by Darkrai14
3

Given:-

a² - 5a + 1 = 0 (a≠0) ....[1]

To find:-

\rm a-\dfrac{1}{a} \ and \ a+\dfrac{1}{a}

Solution:-

Dividing [1] by a

\rm\dashrightarrow\dfrac{a^2-5a+1=0}{a}

\rm\dashrightarrow a-5+\dfrac{1}{a} = 0

Or

\bf\dashrightarrow a+\dfrac{1}{a}=5

Squaring both the sides,

\rm\dashrightarrow \Bigg ( a+\dfrac{1}{a} \Bigg )^2=(5)^2

Since, (a+b)² = ++2ab, Hence,

\rm\dashrightarrow a^2+\dfrac{1}{a^2}+2\times a\times \dfrac{1}{a}=25

\rm\dashrightarrow a^2+\dfrac{1}{a^2}+2=25

\rm\dashrightarrow a^2+\dfrac{1}{a^2}=25-2

\rm\dashrightarrow a^2+\dfrac{1}{a^2}=23

Now we will find \rm a-\dfrac{1}{a}

We know that,

(a-b)² = +-2ab

Therefore,

\rm\dashrightarrow \Bigg ( a-\dfrac{1}{a} \Bigg )^2 = a^2 + \dfrac{1}{a^2}-2\times a\times \dfrac{1}{a}

\rm\dashrightarrow \Bigg ( a-\dfrac{1}{a} \Bigg )^2 = a^2 + \dfrac{1}{a^2}-2

\rm\dashrightarrow \Bigg ( a-\dfrac{1}{a} \Bigg )^2 = 23-2

\rm\dashrightarrow \Bigg ( a-\dfrac{1}{a} \Bigg )^2 = 21

\bf\dashrightarrow  a-\dfrac{1}{a} = \sqrt{21}

Similar questions