Math, asked by ishu2918, 1 year ago

if a square + b square + c square - A B - B C - CA=0then prove that a = B = C

Answers

Answered by Anonymous
1
Hope it helps...!!!!

______________

Consider,

a^2 + b^2 + c^2 – ab – bc – ca = 0

Multiply both sides with 2, we get....

2( a^2 + b^2 + c^2 – ab – bc – ca) = 0

⇒ 2a^2 + 2b^2 + 2c^2 – 2ab – 2bc – 2ca = 0

⇒ (a^2 – 2ab + b^2) + (b^2 – 2bc + c^2) + (c^2 – 2ca + a^2) = 0

⇒ (a –b)^2 + (b – c)^2 + (c – a)^2 = 0


Since the sum of square is zero then each term should be zero


⇒ (a –b)^2 = 0,  (b – c)^2 = 0, (c – a)^2 = 0

⇒ (a –b) = 0,  (b – c) = 0, (c – a) = 0

⇒ a = b,  b = c, c = a

∴ a = b = c.


________________

#Be Brainly✌️☺️
Similar questions