Math, asked by ronakchhabda, 7 months ago

if (a square - bsquare) sin theta +2abcostheta=asuare +bsquare than tan theta=? ​

Answers

Answered by Anonymous
61

Given that:-

\rm { (a^{2} - b^{2}) \sin \theta + 2ab \ \cos \theta = a^{2} + b^{2} }

To find:-

\rm { \tan \theta = ?}

Answer:-

\rm { \tan \theta = \frac{a^{2} - b^{2}}{2ab}}

Step By Step Explanation:-

\rm { (a^{2} - b^{2} ) \sin \theta +  2ab \ \cos \theta = a^{2} + b^{2} }

◆━━━━━━━▣✦▣━━━━━━━━◆

\rm  { (a^{2} - b^{2}) \frac{ \sin \theta }{ \cos \theta} + 2ab \frac{\cos \theta}{ \cos \theta} }

◆━━━━━━━▣✦▣━━━━━━━━◆

\rm { = \frac{a^{2} + b^{2}}{ \cos \theta} }

and

\rm { (a^{2} - b^{2} ) \tan \theta + 2ab = (a^{2} + b^{2} \sec \theta}

Squaring both sides,

\rm{ (a^{2} - b^{2} )^{2} \tan^{2} \theta + 4a^{2} b^{2} = ( a^{2} + b^{2})^{2} \sec^{2} \theta}

◆━━━━━━━▣✦▣━━━━━━━━◆

\rm { \tan^{2} \theta + \bigg ( \frac{b^{2} - a^{2}}{2ab} \bigg ) \tan \theta - \frac{1}{2} + \frac{a^{2}}{4b^{2}} + \frac{b^{2}}{4a^{2}} = 0}

put tan θ = u , then

\rm { \frac{  \frac{ a  ^ { 2  }  -b  ^ { 2  }    }{ ab  }  \pm \sqrt{  \frac{ 4b  ^ { 4  }  -8a  ^ { 2  }  b  ^ { 2  }  -4a  ^ { 4  }  -4b  ^ { 4  }  +8a  ^ { 2  }  b  ^ { 2  }    }{ 4a  ^ { 2  }  b  ^ { 2  }    }    }    }{ 2  } }

\large\boxed{\rm { \therefore   \tan \theta = \frac{a^{2} - b^{2}}{2ab}}}

Answered by Anonymous
26

Answer:

if (a square - bsquare) sin theta +2abcostheta=asuare +bsquare than tan theta=?

Step-by-step explanation:

Answer:-

Similar questions