if a square minus 3a + 1 equals to zero find the value of a square + 1 by a square
Answers
Given : a²-3a+1 =0
To find :
Solution:
a²-3a+1 =0
a²-3a=-1
a(a-3) = -1
now ,
squaring both sides on equation 1
we get
hence , The value if is 7
#Learn more :
https://brainly.in/question/16331779
Answer:
hope it is helpful
Step-by-step explanation:
Given : a²-3a+1 =0
To find : a^2+\frac{1}{a^2}a
2
+
a
2
1
Solution:
a²-3a+1 =0
a²-3a=-1
a(a-3) = -1
\begin{gathered}a-3 = \frac{-1}{a}\\\\a-3+\frac{1}{a}=0\\\\a+\frac{1}{a}=3..(1)\end{gathered}
a−3=
a
−1
a−3+
a
1
=0
a+
a
1
=3..(1)
now ,
squaring both sides on equation 1
we get
\begin{gathered}(a+\frac{1}{a})^2=3^2\\\\a^2+\frac{1}{a^2}+2\times a \times \frac{1}{a}=9\\\\a^2+\frac{1}{a^2}+2=9\\\\a^2+\frac{1}{a^2}= 9-2 \\\\a^2+\frac{1}{a^2} = 7\end{gathered}
(a+
a
1
)
2
=3
2
a
2
+
a
2
1
+2×a×
a
1
=9
a
2
+
a
2
1
+2=9
a
2
+
a
2
1
=9−2
a
2
+
a
2
1
=7
hence , The value if a^2+\frac{1}{a^2}a
2
+
a
2
1
is 7