Math, asked by manoj8085, 1 year ago

if a square minus 5 + 1 equal to zero and a not equal to zero find a square + 1 by a square​

Answers

Answered by pinquancaro
4

The value is a^2+\frac{1}{a^2}=23.08.

Step-by-step explanation:

Given : Equation a^2-5a+1=0 and a not equal to zero.

To find : The value of  a^2+\frac{1}{a^2} ?

Solution :

Quadratic equation, a^2-5a+1=0

Solve by quadratic formula, x=\frac{-B\pm\sqrt{B^2-4AC}}{2A}

Here, A=1, B=-5 and C=1

a=\frac{-(-5)\pm\sqrt{(-5)^2-4(1)(1)}}{2(1)}

a=\frac{5\pm\sqrt{21}}{2}

a=\frac{5+\sqrt{21}}{2},\frac{5-\sqrt{21}}{2}

a=4.79,0.20

Reject a=0.20 as it approx to 0.

So, the value of a≈4.8

Substitute in the value,

a^2+\frac{1}{a^2}=(4.8)^2+\frac{1}{(4.8)^2}

a^2+\frac{1}{a^2}=23.04+\frac{1}{23.04}

a^2+\frac{1}{a^2}=23.04+\frac{1}{23.04}

a^2+\frac{1}{a^2}=23.04+0.04

a^2+\frac{1}{a^2}=23.08

Therefore, the value is a^2+\frac{1}{a^2}=23.08.

#Learn more

3x^2-2x-1 quadratic equation ​

https://brainly.in/question/11881839

Similar questions