Math, asked by mohan992, 1 year ago

if a square minus b square sin theta + 2 a b cos theta equal a square + b square then prove that tan theta is equal a square minus b square upon 2ab

Answers

Answered by Shaizakincsem
43

The equation we are provided with is:

(a² - b²) sinθ + 2abcosθ = a² + b²

sinθ = 2tanθ/2 / 1 + tan 2 θ/2 and cosθ = 1- tan² θ/2 / 1 +tan² θ/2

(a² - b²) 2 tanθ/2 / 1 + tan 2θ/2 + 2ab 1-tan² θ/2 / 1 + tan² θ/2 = a² + b²

now we will put this in the equation: t = tan θ/2

(a² - b²) 2t / 1 + t² + 2ab 1 - t²/ 1 +t² = a² + b²

tanθ = (a² - b²) /2ab

If there is any confusion please leave a comment below.

Answered by Lavanyavaikunthe
1

Step-by-step explanation:

2

−b

2

)sinθ+2abcosθ=a

2

+b

2

(dividingbycosθ)

= (a

2

−b

2

)

cosθ

sinθ

+2ab

cosθ

cosθ

=

cosθ

a

2

+b

2

= (a

2

−b

2

)tanθ+2ab=(a

2

+b

2

)secθ

= squaring both side we get

= (a

2

−b

2

)

2

tan

2

θ+4a

2

b

2

+4ab(a

2

−b

2

)tanθ=(a

2

+b

2

)

2

sec

2

θ

= (a

2

−b

2

)

2

tan

2

θ+4a

2

b

2

+4ab(a

2

−b

2

)tanθ=(a

2

+b

2

)

2

(1+tan

2

θ)

= [(a

2

−b

2

)

2

−(a

2

+b

2

)

2

]tan

2

θ+4a

2

b

2

+4ab(a

2

−b

2

)tanθ−(a

2

+b

2

)

2

=0

= [(a

2

−b

2

+a

2

+b

2

)(a

2

−b

2

−a

2

−b

2

)]tan

2

θ+4ab(a

2

−b

2

)tanθ+4a

2

b

2

−(a

4

+b

4

+2a

2

b

2

)=0

−4a

2

b

2

tan

2

θ+4ab(a

2

−b

2

)tanθ+2a

2

b

2

−a

4

−b

4

=0

+tan

2

θ−(

ab

a

2

−b

2

)tanθ−

2

1

+

4b

2

a

2

+

4a

2

b

2

=0

tan

2

θ+(

ab

b

2

−a

2

)tanθ−

2

1

+

4b

2

a

2

+

4a

2

b

2

=0

puttanθ=u,then

u

2

+(

ab

b

2

−a

2

)u−

2

1

+

4b

2

a

2

+

4a

2

b

2

=0

u=

2

−(

ab

b

2

−a

2

(

ab

b

2

−a

2

)

2

−4(

4b

2

a

2

+

4a

2

b

2

2

1

)

=

2

ab

a

2

−b

2

±

4a

2

b

2

4(b

2

−a

2

)

2

−4(a

4

+b

4

)−2a

2

b

2

=

2

ab

a

2

−b

2

±

4a

2

b

2

4b

4

+4a

4

−8a

2

b

2

−4a

4

−4b

4

+8a

2

b

2

tanθ=

2ab

a

2

−b

2

Similar questions