Math, asked by patelpiyushforu, 17 days ago

if a square
if \: a ^{2}  + b ^{2}  + c ^{2}  = 25 \: and \: ab + bc + ca = 3 \: h \\ then \: a + b + c = ?
if a square + b square + c square =25 and ab+bc+ca=3 then a+b+c=?​

Answers

Answered by Anonymous
35

Algebraic Identities

The following algebraic identity will be used to find the solution:

\boxed{(a+b+c)^2 = a^2 + b^2 + c^2 +2(ab + bc + ca)}

We have been given that, a ^{2} + b ^{2} + c ^{2} = 25 and  ab + bc + ca = 3. With this information, we have been asked to find out the value of a + b + c.

We know that,

\boxed{(a+b+c)^2 = a^2 + b^2 + c^2 +2(ab + bc + ca)}

By substituting the known values in the above identity, we get:

\implies (a+b+c)^2 = 25 + 2(3) \\  \\ \implies (a+b+c)^2 = 25 + 6 \\  \\ \implies (a+b+c)^2 = 31 \\  \\ \implies a+b+c = \sqrt{31}  \\  \\ \implies \boxed{a+b+c = 5.56}

Hence, the value a + b + c is 5.56.

\rule{90mm}{2pt}

MORE TO KNOW

\boxed{\begin{array}{l}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\\frak{1.}\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\\frak{2.}\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\\frak{3.}\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\\frak{4.}\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\\frak{5.}\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\\frak{6.}\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\\frak{7.}\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\\frak{8.}\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{array}}

Answered by Anonymous
41

Answer:

Given :-

  • a² + b² + c² = 25
  • ab + bc + ca = 3

To Find :-

  • What is the value of a + b + c ?

Solution :-

Given :

\leadsto \bf a^2 + b^2 + c^2 =\: 25

\leadsto \bf ab + bc + ca =\: 3

As we know that :

\footnotesize \bigstar\: \: \sf\boxed{\bold{\pink{(a + b + c)^2 =\: a^2 + b^2 + c^2 + 2(ab + bc + ca)}}}\: \: \bigstar\\

So, according to the question by using the formula we get,

\footnotesize \dashrightarrow \bf (a + b + c)^2 =\: a^2 + b^2 + c^2 + 2(ab + bc + ca)\\

By putting :

  • a² + b² + c² = 25
  • ab + bc + ca = 3

\dashrightarrow \sf (a + b + c)^2 =\: 25 + 2(3)

\dashrightarrow \sf (a + b + c)^2 =\: 25 + 2 \times 3

\dashrightarrow \sf (a + b + c)^2 =\: 25 + 6

\dashrightarrow \sf (a + b + c)^2 =\: 31

\dashrightarrow \sf a + b + c =\: \sqrt{31}

\dashrightarrow \sf a + b + c =\: 5.567

\dashrightarrow \sf\bold{\red{a + b + c =\: 5.567}}

\therefore The value of a + b + c is 5.567 .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

IMPORTANT ALGEBRAIC EXPRESSION :-

\clubsuit \: \: \sf\bold{\pink{(a + b)^2 =\: a^2 + 2ab + b^2}}\\

\clubsuit \: \:  \sf\bold{\pink{(a - b)^2 =\: a^2 - 2ab + b^2}}\\

\clubsuit \: \: \sf\bold{\pink{a^2 - b^2 =\: (a + b)(a - b)}}\\

\clubsuit \: \: \sf\bold{\pink{(x + a)(x + b) =\: x^2 + (a + b)x + ab}}\\

\clubsuit \: \: \sf\bold{\pink{(a + b + c)^2 =\: a^2 + b^2 + c^2 + 2ab + 2bc + 2ca}}\\

\\

\clubsuit \: \: \sf\bold{\purple{(a + b)^3 =\: a^3 + 3a^2b + 3ab^2 + b^3}}\\

\clubsuit \: \: \sf\bold{\purple{(a - b)^3 =\: a^3 - 3a^2b + 3ab^2 - b^3}}\\

\clubsuit \: \: \sf\bold{\purple{a^3 + b^3 =\: (a + b)(a^2 + ab + b^2)}}\\

\footnotesize \clubsuit \: \: \sf\bold{\purple{a^3 + b^3 + c^3 - 3abc =\: (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)}}\\

Similar questions