If a straight line lx+my+n= 0 touches the hyperbola x²/a²- y²/b² = 1 ,show that a²l²- b²m²= n²
Answers
EXPLANATION.
→ straight line = lx + my + n = 0
→ touches the hyperbola = x²/a² - y²/b² = 1
→ To show that = a²l² - b²m² = n.
→ equation of line → y = mx + c
→ lx + my + n = 0
→ my = - lx - n
→ y = -lx/m - n/m
→ conditions of tangent for the line y = mx + c
to be tangent to hyperbola x²/a² - y²/b² = 1.
→ c² = a²m² - b²
→ put the equation in this conditions.
→ ( -n/m)² = a²( -l/m)² - b²
→ n²/m² = a²l²/m² - b²
→ n² = a²l² - m²b² = Hence proved.
More information.
→ equation of tangent.
(1) → slope form.
→ c² = a²m² - b²
→ c = ± √a²m² - b²
→ equation of tangent → y = mx ± √ a²m² - b².
(2) → point form.
→ x²/a² - y²/b² = 1
→ xx¹/a² - yy¹/b² = 1 = point form.
(3) → parametric form.
→ x²/a² - y²/b² = 1
→ xx¹/a² - yy¹/b² = 1
→ let the parametric coordinate be :-
( a sec ø, b tan ø)
→ put the parametric point in equation.
→ x. a sec ø / a² - y. b tan ø / b² = 1.