Math, asked by priyanka1862, 1 year ago

if A=tan^-1x,then the value of sin2A

Answers

Answered by brunoconti
9

Answer:

Step-by-step explanation:

Attachments:
Answered by harendrachoubay
18

The value of \sin 2A=\dfrac{2x}{1+x^2}.

Step-by-step explanation:

We have,

A=\tan^{-1}x

\tan A=x         ......... (1)

To find, the value of \sin 2A=

We know that,

\sin 2A=2\sin A\cos A

\sin 2A=\dfrac{2\sin A\cos A}{\sin^2 A+\cos^2 A}

\sin 2A=\dfrac{\dfrac{2\sin A\cos A}{\cos^2 A}}{\dfrac{\sin^2 A+\cos^2 A}{\cos^2 A}}

\sin 2A=\dfrac{2\tan A}{1+\tan^2 A}    ...... (2)

From equation (1) and (2), we get

\sin 2A=\dfrac{2x}{1+x^2 }

\sin 2A=\dfrac{2x}{1+x^2 }

Hence, the value of  \sin 2A=\dfrac{2x}{1+x^2}.

Similar questions