Math, asked by insanemujju1234, 7 months ago

if a = tan 25 + tan 35 - root3 and b = cot 25 + cot 35 + root 3 then ab =?

Answers

Answered by XxHeartHackerRahulxX
6

^^^^^^^^^^^^^^^^^^^↑^^^^^^^^^^^^^^^^^^^^^

Attachments:
Answered by Swarup1998
1

\mathsf{ab=-3}

Concept to be used:

\mathsf{tan(A+B)=\dfrac{tanA+tanB}{1-tanA\:tanB}}

\mathsf{cot(A+B)=\dfrac{cotA\:cotB-1}{cotB+cotA}}

\mathsf{tanA\times cotA=1}

Step-by-step explanation:

Step 1.

We know that, \mathsf{tan60^{\circ}=\sqrt{3}}

\mathsf{\Rightarrow tan(25^{\circ}+35^{\circ})=\sqrt{3}}

\mathsf{\Rightarrow \dfrac{tan25^{\circ}+tan35^{\circ}}{1-tan25^{\circ}\:tan35^{\circ}}=\sqrt{3}}

\mathsf{\Rightarrow tan25^{\circ}+tan35^{\circ}=\sqrt{3}-\sqrt{3}\:tan25^{\circ}\:tan35^{\circ}}

\mathsf{\Rightarrow tan25^{\circ}+tan35^{\circ}-\sqrt{3}=-\sqrt{3}\:tan25^{\circ}\:tan35^{\circ}}

So, we have

\boxed{\mathsf{a=-\sqrt{3}\:tan25^{\circ}\:tan35^{\circ}}}

Step 2.

Also, \mathsf{cot60^{\circ}=\dfrac{1}{\sqrt{3}}}

\mathsf{\Rightarrow cot(25^{\circ}+35^{\circ})=\dfrac{1}{\sqrt{3}}}

\mathsf{\Rightarrow \dfrac{cot25^{\circ}\:cot35^{\circ}-1}{cot25^{\circ}+cot35^{\circ}}=\dfrac{1}{\sqrt{3}}}

\mathsf{\Rightarrow \sqrt{3}\:cot25^{\circ}\:cot35^{\circ}-\sqrt{3}=cot25^{\circ}+cot35^{\circ}}

\mathsf{\Rightarrow cot25^{\circ}+cot35^{\circ}+\sqrt{3}=\sqrt{3}\:cot25^{\circ}\:cot35^{\circ}}

So, we have

\boxed{\mathsf{b=\sqrt{3}\:cot25^{\circ}\:cot35^{\circ}}}

Step 3.

Now, \mathsf{ab}

\mathsf{=(-\sqrt{3}\:tan25^{\circ}\:tan35^{\circ})(\sqrt{3}\:cot25^{\circ}\:cot35^{\circ})}

\mathsf{=-\sqrt{3}\times\sqrt{3}\times tan25^{\circ}\times cot25^{\circ}\times tan35^{\circ}\times cot35^{\circ}}

\mathsf{=-3\times 1\times 1}

\mathsf{=-3}

#SPJ3

Similar questions