If a term of an expression consist of a number multiplied by one or more variables this number is the —————— of the term
Answers
Answer:
We Should Know Some Trignometric Identities For Solving This Question.
━━━━━━━━━━━━━━━━━━━━━━━━━━
━━━━━━━━━━━━━━━━━━━━━━━━━━
.........R.H.S
Step-by-step explanation:
L.H.S:−Sin10.Sin30.Sin50.Sin70
\begin{gathered}\begin{gathered}= \cos(90 - 10) \sin(30) \cos(90 - 40) \cos(90 - 70) \\ = \cos(80) \: \frac{1}{2} \: \cos(40) \: \cos(20) \\ = \frac{1}{4 \sin(20) } \cos(8 0 ) \cos(40) . \: 2 \sin(20) \cos(20) \\ = \frac{1}{8 \sin(20) } \cos(80) 2. \cos(40) \sin(40) \\ = \frac{1}{16 \sin(20) } 2 \cos(80) \sin(80 ) \\ = \frac{1}{16 \sin(20) } \sin(160) \\ = \frac{1}{16 \sin(20) } \sin(180 - 20) \\ = \frac{1}{16 \sin(20) } \sin(20) \\ = \frac{1}{16} \: \: \: \: \: \: \: \: .........R.H.S\end{gathered} \end{gathered}
=cos(90−10)sin(30)cos(90−40)cos(90−70)
=cos(80)
2
1
cos(40)cos(20)
=
4sin(20)
1
cos(80)cos(40).2sin(20)cos(20)
=
8sin(20)
1
cos(80)2.cos(40)sin(40)
=
16sin(20)
1
2cos(80)sin(80)
=
16sin(20)
1
sin(160)
=
16sin(20)
1
sin(180−20)
=
16sin(20)
1
sin(20)
=
16
1
.........R.H.S
=cos(90−10)sin(30)cos(90−40)cos(90−70)=cos(90−10)sin(30)cos(90−40)cos(90−70)
=cos(80) 2/1=cos(80)2/1
cos(40)cos(20)= 4sin(20)1cos(40)cos(20)=4sin(20)1
cos(80)cos(40).2sin(20)cos(20)= 8sin(20)1cos(80)cos(40).2sin(20)cos(20)=8sin(20)1
cos(80)2.cos(40)sin(40)= 16sin(20)1cos(80)2.cos(40)sin(40)=16sin(20)1
2cos(80)sin(80)= 16sin(20)12cos(80)sin(80)=16sin(20)1
sin(160)= 16sin(20)1sin(160)=16sin(20)1
sin(180−20)= 16sin(20)1sin(180−20)=16sin(20)1
sin(20)= 16/1sin(20)=16/1
.........R.H.S