Math, asked by sujathasachu7, 25 days ago

If A=
 \binom{23}{10}
=P+Q where P is symmetric and Q is skew symmetric martix, then find the matrix Q​

Answers

Answered by yassersayeed
1

Given:- A=\left[\begin{array}{ll}2 & 3 \\1 & 0\end{array}\right]_{2 \times 2}

\text { P is syrametric }\\P=\frac{1}{2}\left(A+A^{+}\right)\\Q \text { is skew symmetric }\\Q=\frac{1}{2}\left(A-A^{\top}\right)\\A^{\top}=\left[\begin{array}{ll}2 & 1 \\3 & 0\end{array}\right]

NOw as we know that ,Q=\frac{1}{2}\left(A-A^{T}\right)

Then,

Q=\frac{1}{2}\left(\left[\begin{array}{ll}2 & 3 \\1 & 0\end{array}\right]-\left[\begin{array}{ll}2 & 1 \\3 & 0\end{array}\right]\right)

=\left(\frac{1}{2}\left[\begin{array}{cc}0 & 2 \\-2 & 0\end{array}\right]\right.

Q =  \left[\begin{array}{ll}0 & 1 \\-1 & 0\end{array}\right]

Similar questions