Math, asked by pranjali759, 1 month ago

If a=
 \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }
and
b =  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }
then \: the \: value \: ofa + b \:  =

Answers

Answered by manmeetmaan20
3

\huge\star\:Solution

Step-by-step explanation:

a =  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  = \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }   \times \frac{2 +  \sqrt{3} }{2  +  \sqrt{3} }   \\ a =   \frac{({2 +  \sqrt{3} })^{2}}{( {2} )^{2}  -  ({ \sqrt{3} })^{2} }   =   \frac{ {2}^{2}  +  { (\sqrt{3}) }^{2} + 4 \sqrt{3}  }{4 - 3}  \\ a =  \frac{4 + 3 + 4 \sqrt{3} }{1}  = 7 + 4 \sqrt{3}

b = \frac{2 - \sqrt{3} }{2 + \sqrt{3} } = \frac{2 - \sqrt{3} }{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2  - \sqrt{3} } \\ b = \frac  {({2 - \sqrt{3})}^{2} }{ {2}^{2}  -   {(\sqrt{3})}^{2}  } =   \frac{ {2}^{2}  + ( { \sqrt{3} )}^{2}  - 4 \sqrt{7} }{4 - 3}  \\ b =  \frac{4 + 3 - 4 \sqrt{3} }{1}  = 7 - 4 \sqrt{3}

a + b = 7 + {4\sqrt{3}}  + 7 - 4 \sqrt{3}  = 7 + 7 = 14

Similar questions