Math, asked by UserBusy, 1 year ago

If a =
 \frac{ \sqrt{10} +  \sqrt{5}  }{ \sqrt{10} -  \sqrt{5}  }

And b =
 \frac{ \sqrt{10}  -  \sqrt{5} }{ \sqrt{10}  +  \sqrt{5} }

Then show that
 \sqrt{a}  -  \sqrt{b}  - 2 \sqrt{ab} = 0



wardahd1234: okay
UserBusy: Kya okay

Answers

Answered by Anonymous
52

Answer:

a=\dfrac{\sqrt{10}+\sqrt{5}}{\sqrt{10}-\sqrt{5}}\\\\b=\dfrac{\sqrt{10}-\sqrt{5}}{\sqrt{10}+\sqrt{5}}\\\\\implies a=\dfrac{\sqrt{10}+\sqrt{5}}{\sqrt{10}-\sqrt{5}}\times \dfrac{\sqrt{10}+\sqrt{5}}{\sqrt{10}+\sqrt{5}}\\\\\implies a=\dfrac{(\sqrt{10}+\sqrt{5})^2}{(\sqrt{10})^2-(\sqrt{5})^2}\\\\\implies \sqrt{a}=\dfrac{\sqrt{10}+\sqrt{5}}{\sqrt{5}}\\\\\text{Similarly we will have :}\\\\\implies \sqrt{b}=\dfrac{\sqrt{10}-\sqrt{5}}{\sqrt{5}}

\sqrt{a}-\sqrt{b}=\dfrac{\sqrt{10}+\sqrt{5}}{\sqrt{5}}-\dfrac{\sqrt{10}-\sqrt{5}}{\sqrt{5}}\\\\\implies \sqrt{a}-\sqrt{b}=\dfrac{2\sqrt{5}}{\sqrt{5}}\implies 2\\\\-2\sqrt{ab}=-2(\dfrac{\sqrt{10}+\sqrt{5}}{\sqrt{5}}\times \dfrac{\sqrt{10}-\sqrt{5}}{\sqrt{5}})\\\\\implies -2\sqrt{ab}=-2(\dfrac{(\sqrt{10})^2-(\sqrt{5})^2}{5})\\\\\implies -2\sqrt{ab}=-2(\dfrac{10-5}{5})\\\\\implies -2\sqrt{ab}=-2\times \dfrac{5}{5}\implies -2\\\\\text{Adding both we get :}\\\\\implies 2-2=0\\\\\textbf{QED}

Step-by-step explanation:

The basic thing involved here is to rationalize the denominators .

Use the formula :

( a + b ) ( a - b ) = a² - b²

Multiplying a surd with the conjugate surd results in a rational number .


Anonymous: Perfect !
Anonymous: :)
Anonymous: :)
Anonymous: good. : )
Anonymous: : )
MissError: Great efforts! ✌
Anonymous: :)
Answered by Anonymous
0

ANSWER:----------------

a= 10 − 5

10 + 5

b= 10 + 5

10 −5

⟹a= 10 − 5

10+5× 10 + 5

10 +5

a= ( 10 ) 2 −( 5 ) 2( 10 +5 }

a−b=10+55−10−55⟹a−b=255⟹2−2ab=−2(10+55×10−55)⟹−2ab=−2((10)2−(5)25)⟹−2ab=−2(10−55)⟹−2ab=−2×55⟹−2

Add both we willget

⟹2−2=0</p><p></p><p>[tex]\begin{lgathered}\sort{a}-

\sqrt{b}=\dfrac{\sqrt{10}+\sqrt{5}}{\sqrt{5}}-\dfrac{\sqrt{10}-\sqrt{5}}{\sqrt{5}}\\\\\implies \sqrt{a}-

\sqrt{b}=\dfrac{2\sqrt{5}}{\sqrt{5}}\implies2\\\\-2\sqrt{ab}=-2(\dfrac{\sqrt{10}+\sqrt{5}}{\sqrt{5}}\times \dfrac{\sqrt{10}-

\sqrt{5}}{\sqrt{5}})\\\\\implies -2\sqrt{ab}=-2(\dfrac{(\sqrt{10})^2-(\sqrt{5})^2}{5})\\\\\implies

[TeX]-2\sqrt{ab}=-2(\dfrac{10-5}{5})\\\\\implies -2\sqrt{ab}=-2\times \dfrac{5}{5}\implies[/tex]

[TeX] -2\\\\\text{Adding both we get :}\\\\\implies 2-2=0\\\\\textbf{QED}\end{lgathered}[/tex]

=−2×

5

5

⟹−2 both we get :--

Similar questions