Math, asked by 123srichai, 7 months ago

If A = \left[\begin{array}{ccc}0&2\\3&-4\\\end{array}\right] , kA = \left[\begin{array}{ccc}0&3a\\2b&24\\\end{array}\right] then find the values of k, a, and b

Answers

Answered by Anonymous
127

Given:

 \sf A = \left[\begin{array}{ccc}0&2\\3&-4\\ \end{array}\right] \: and \: kA  = \left[\begin{array}{ccc}  0&3a\\2b&24\\\end{array}\right]

 \rule{81}{2}

Find:

values of k,a and b

 \rule{81}{2}

Solution:

 \sf If,  A = \left[\begin{array}{ccc}0&2\\3&-4\\ \end{array}\right]

 \sf Then \: kA = k\left[\begin{array}{ccc}0&2\\3&-4\\ \end{array}\right] = \left[\begin{array}{ccc}0&2k\\3k&-4k\\ \end{array}\right]

 \sf But \: it \: also \: given, kA  = \left[\begin{array}{ccc}  0&3a\\2b&24\\\end{array}\right]

 \sf So,  \left[\begin{array}{ccc}0&2k\\3k&-4k\\ \end{array}\right]  = \left[\begin{array}{ccc}  0&3a\\2b&24\\\end{array}\right]

\sf  \implies 2k = 3a.....(i)

\sf  \implies 3k = 2b.....(ii)

\sf  \implies  - 4k = 24.....(iii)

\sf From \: eq(iii) \: k =   \frac{ - 24}{4}  =  - 6

\sf  \implies  k =  - 6

Now, putting value of k in eq(i) we, get

\sf  2k = 3a

\sf \implies  2( - 6) = 3a

\sf \implies   - 12 = 3a

\sf \implies a =  \frac{ - 12}{3}  =  - 4

\sf \implies a = - 4

Now, putting value of k in eq(ii) we, get

\sf  3k = 2b

\sf \implies 3( - 6) = 2b

\sf \implies  - 18 = 2b

\sf \implies b =  \frac{ - 18}{2}  =  - 9

\sf \implies b = - 9

 \rule{122}{2}

Hence, the value of

  • k = -6
  • a = -4
  • b = -9
Similar questions