Math, asked by PragyaTbia, 1 year ago

If A =   \left[\begin{array}{ccc}1&1&3\\5&2&6\\-2&-1&-3\end{array}\right], then find A³

Answers

Answered by hukam0685
0

Answer:

A^{3}=\left[\begin{array}{ccc}0&0&0\\0&0&0\\0&0&0\end{array}\right]

Step-by-step explanation:

if  

A^{3} =A^{2}\times A \\ \\A^{2}=\left[\begin{array}{ccc}1&1&3\\5&2&6\\-2&-1&-3\end{array}\right]\times\left[\begin{array}{ccc}1&1&3\\5&2&6\\-2&-1&-3\end{array}\right]\\\\\\A^{2}=\left[\begin{array}{ccc}0&0&0\\3&3&9\\-1&-1&-3\end{array}\right]

so for

A^{3} =A^{2}\times A \\\\=\left[\begin{array}{ccc}0&0&0\\3&3&9\\-1&-1&-3\end{array}\right] \times \left[\begin{array}{ccc}1&1&3\\5&2&6\\-2&-1&-3\end{array}\right]\\\\\\ =\left[\begin{array}{ccc}0&0&0\\0&0&0\\0&0&0\end{array}\right]\\\\\\=O

Similar questions