Math, asked by PragyaTbia, 1 year ago

If A =   \left[\begin{array}{ccc}1&-2&3\\-4&2&5\end{array}\right] and B =  \left[\begin{array}{ccc}2&3\\4&5\\2&1\end{array}\right] , do AB and BA exist? If they exist find them. Do A and B commute with respect to multiplication?

Answers

Answered by TooFree
5

Answer:

=\left[\begin{array}{cc}0&-4\\10&3\end{array}\right]


Step-by-step explanation:

A = \left[\begin{array}{ccc}1&-2&3\\-4&2&5\end{array}\right]

B = \left[\begin{array}{ccc}2&3\\4&5\\2&1\end{array}\right]


AB exist but BA does not exist

A and B do not commute with respect to multiplication


Find AB:

\left[\begin{array}{ccc}1&-2&3\\-4&2&5\end{array}\right] \left[\begin{array}{ccc}2&3\\4&5\\2&1\end{array}\right]


= \left[\begin{array}{ccc}1 \times 2 + (-2) \times 4 + 3 \times 2&1 \times 3 + (-2) \times 5 + 3 \times 1\\(-4) \times 2 + 2 \times 4 + 5 \times 2&(-4) \times 3 + 2 \times 5 + 5 \times 1\end{array}\right]


=\left[\begin{array}{cc}0&-4\\10&3\end{array}\right]

Similar questions