Math, asked by Sumianil4570, 1 year ago

If A =  \left[\begin{array}{ccc}i&0\\0&-i\end{array}\right], B =  \left[\begin{array}{ccc}0&-1\\1&0\end{array}\right] and C =   \left[\begin{array}{ccc}0&i\\i&0\end{array}\right]  and I is the unit matrix of order 2, then show that
i. A² = B² = C² = -I
ii. AB = -BA = -C

Answers

Answered by hukam0685
0
i. A² = B² = C² = -I

If
 A=\left[\begin{array}{ccc}i&0\\0&-i\end{array}\right]\\\\for\:\:A^{2}=\left[\begin{array}{ccc}i&0\\0&-i\end{array}\right]\times\left[\begin{array}{ccc}i&0\\0&-i\end{array}\right]\\\\\left[\begin{array}{ccc}i^{2}&0\\0&i^{2}\end{array}\right]\\\\

As i^2= -1

So
A^{2}=\left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right] \\\\
...eq1

by the same way

 B = \left[\begin{array}{ccc}0&-1\\1&0\end{array}\right]
B^{2}=\left[\begin{array}{ccc}0&-1\\1&0\end{array}\right]\times\left[\begin{array}{ccc}0&-1\\1&0\end{array}\right]\\\\=\left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right]\\\\
...eq2

 C=\left[\begin{array}{ccc}0&i\\i&0\end{array}\right] \\\\C^{2}=\left[\begin{array}{ccc}0&i\\i&0\end{array}\right] \times \left[\begin{array}{ccc}0&i\\i&0\end{array}\right]\\\\=\left[\begin{array}{ccc}i^{2}&0\\0&i^{2}\end{array}\right]\\\\

So
C^{2}=\left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right]\\\\
...eq3
as we know that
I=\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]\\\\so\\\\-I=\left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right]\\\\
...eq4

from eq1,2,3,4
we can see that A² = B² = C² = -I

ii. AB = -BA = -C

AB=\left[\begin{array}{ccc}i&0\\0&-i\end{array}\right] \times  \left[\begin{array}{ccc}0&-1\\1&0\end{array}\right]\\\\=\left[\begin{array}{ccc}0&-i\\-i&0\end{array}\right]
...eq5

-BA=  \left[\begin{array}{ccc}0&1\\-1&0\end{array}\right]\times \left[\begin{array}{ccc}i&0\\0&-i\end{array}\right]\\\\=\left[\begin{array}{ccc}0&-i\\-i&0\end{array}\right]
...eq6

from eq5 and eq6
it is clear that AB = -BA = -C
Similar questions