Math, asked by shubhamrasiyal30, 5 months ago

if A the am between a and b, prove that (A-a) ^2+(A-b)^2=1/2(a-b) ^2​

Answers

Answered by VishnuPriya2801
26

Answer:-

Given:

A is the AM (Arithmetic mean) of a and b.

We know that,

AM of a and b = (a + b) / 2

So,

A = (a + b) / 2 -- equation (1).

We have to prove :

(A - a)² + (A - b)² = (1/2) * (a - b)²

 \implies \sf \:  \bigg( \dfrac{a + b}{2}  - a \bigg) ^{2}  +  \bigg( \dfrac{a + b}{2}  - b \bigg) ^{2}  =  \frac{1}{2}  \times  {(a - b)}^{2}  \\

[ From equation (1) ]

 \: \implies \sf \:  \bigg( \dfrac{a + b - 2a}{2}  \bigg) ^{2}  +  \bigg( \dfrac{a + b - 2b}{2}   \bigg) ^{2}  =  \frac{1}{2}  \times  {(a - b)}^{2}  \\ \\ \\ \: \implies \sf \:\bigg( \dfrac{ b - a}{2}  \bigg) ^{2}  +  \bigg( \dfrac{a  - b}{2}   \bigg) ^{2}  =  \frac{1}{2}  \times  {(a - b)}^{2} \: \\  \\ \\  \implies \sf \:\frac{ {(b - a)}^{2} }{4}  +  \frac{ {(a - b)}^{2} }{4}  =  \frac{1}{2}  \times  {(a - b) }^{2}  \\ \\ \\ \implies \sf \:\frac{ {(b - a)}^{2} + ( {a - b)}^{2}  }{4} =  \frac{1}{2}  \times  {(a - b)}^{2}

  • (a - b)² = + - 2ab.

 \: \implies \sf \:\frac{ {b}^{2}  +  {a}^{2}  - 2ba +  {a}^{2}  +  {b}^{2}  - 2ab}{4} =  \frac{1}{2}  \times  {(a - b)}^{2}  \\ \\ \\ \implies \sf \:\frac{2 {b}^{2}  + 2 {a}^{2}  - 4ab}{4} =  \frac{1}{2}  \times  {(a - b)}^{2} \\  \\\\ \implies \sf \:\frac{2( {b}^{2}  + {a}^{2}  - 2ab)}{4} =  \frac{1}{2}  \times  {(a - b)}^{2} \\  \\\\ \implies  \boxed{\sf \: \frac{(a - b) ^{2} }{2}  =   \frac{ {(a - b)}^{2} }{2}}

Hence Proved.

Answered by Anonymous
217

Given :

  • if A the am between a and b,

To Prove :

  • prove that (A - a)² + (A - b)² = 1 /2(a - b)²

Solution :

: \implies \sf \:  \:  \:  \:  \: \:  {(A  - a)}^{2}  +  {(A  -  b)}^{2}  =  \frac{1}{2}  \times  {(a - b)}^{2} \:  \\\\\\

 : \implies \sf \:  \:  \:  \:  \:  \bigg( \dfrac{a + b}{2}  - a \bigg) ^{2}  +  \bigg( \dfrac{a + b}{2}  - b \bigg) ^{2}  =  \frac{1}{2}  \times  {(a - b)}^{2}  \\\\\\ : \implies \sf \:  \:  \:  \:  \:  \bigg( \dfrac{a + b}{2}  - a \bigg) ^{2}  +  \bigg( \dfrac{a + b}{2}  - b \bigg) ^{2}  =  \frac{1}{2}  \times  {(a - b)}^{2}  \\\\\\

 : \implies \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg( \dfrac{a + b - 2a}{2}  \bigg) ^{2}  +  \bigg( \dfrac{a + b - 2b}{2}   \bigg) ^{2}  =  \frac{1}{2}  \times  {(a - b)}^{2}  \\ \\ \\ \: :\implies \sf \:\:  \:  \:  \:  \:  \:  \:  \:  \:\bigg( \dfrac{ b - a}{2}  \bigg) ^{2}  +  \bigg( \dfrac{a  - b}{2}   \bigg) ^{2}  =  \frac{1}{2}  \times  {(a - b)}^{2} \: \\  \\ \\  :\implies \sf \:  \:  \:  \:  \:  \:  \:  \:  \:\:\frac{ {(b - a)}^{2} }{4}  +  \frac{ {(a - b)}^{2} }{4}  =  \frac{1}{2}  \times  {(a - b) }^{2}  \\ \\ \\ :\implies \sf \:\:  \:  \:  \:  \:  \:  \:  \:  \:\frac{ {(b - a)}^{2} + ( {a - b)}^{2}  }{4} =  \frac{1}{2}  \times  {(a - b)}^{2}  \\  \\  \\  \: :\implies \sf \:\:  \:  \:  \:  \:  \:  \:  \:  \: \frac{ \cancel{2} \bigg( {(a - b)}^{2} \bigg)}{ \cancel{4} }  = \frac{1}{2}  \times  {(a - b)}^{2} \\  \\  \\ \: :\implies \sf \:\:  \:  \:  \:  \:  \:  \:  \:  \: \: \frac{1}{2}  \times  {(a - b)}^{2} = \frac{1}{2}  \times  {(a - b)}^{2} \:  \\  \\

Hence proved !!

Similar questions