Math, asked by pandutanvi12, 9 months ago

if a train runs at 40 kmph it reaches its destination late by 11 minutes, but if it runs at 50 kmph it is late by 5 minutes only. find the distance to be covered by the train . please explain this answer with process ​

Answers

Answered by sumanjalisegu
0

Answer:

19 MINS

EXPLANATION:

Let  the correct time for the train to complete the journey is x minuets

Then train cover distance in x+11 minuets at speed 40 km\hr =  40(x+11) km /60

Then train cover distance in x+5 minuets at speed 50 km\hr =

50(x+5) km /60

Both are same then   :40(x+11) /60=50(x+5) /60

​∴40x+440=50x+250

∴−10x=−190

∴x=19 minutes

HOPE THIS HELPED

IF YES MARK IT AS BRAINLIEST

Answered by joelpaulabraham
0

Answer:

20km

Step-by-step explanation:

Let 'd' be the distance travelled in km

also, Let the actual time required by the train to reach the destination in hours be t

Now,

Case 1

Distance = speed × time

According to the Question,

d = 40(t + (11/60)) ------- 1

Simplifying we get

d = (40t + (440/60)) -------- 2

Note:- I have divided the minutes by 60, this is because we took 11 as minutes and while dealing with km/h, we must change the time into hours

Case 2

According to the Question,

d = 50(t + (5/60))

Simplifying we get

d = 50t + (250/60) ------- 3

We know that the distance travelled by the train is same even if time and speed changes

then,

Eq.3 = Eq.2

that is,

50t + (250/60) = 40t + (440/60)

50t - 40t = (440/60) - (250/60)

10t = ((440 - 250)/60)

10t = 190/60

10t = 19/6

t = 19/60 hrs

we know,

1 hr = 60 minutes

then,

19/60 hrs = (19/60) × 60 = 19 minutes

so, it was supposed to arrive at the station after 19 minutes

But we must find the distance travelled,

Putting t = 19/60 in eq.1

d = 40((19/60) + (11/60))

d = 40((19 + 11)/60)

d = 40 × (30/60)

d = 40 × (1/2)

d = 40/2

d = 20 km

Thus the total Distance covered in km is 20km

Hope it helped and you understood it........All the best

Similar questions