Math, asked by Anonymous, 4 months ago

If a transversal intersects two lines such that the bisectors of a pair of corresponding angles are parallel, then prove that the two lines are parallel.

Attachments:

Answers

Answered by StormEyes
6

\sf \Large Solution!!

\sf \large To\:prove:

\sf \to PQ\parallel RS

\sf \large Now,

\sf \to \angle ABE=\frac{1}{2}\angle ABQ

\sf \to \angle BCG=\frac{1}{2}\angle BCS

\sf \to BE\parallel CG

\sf \therefore \angle ABE=\angle BCG\quad (Corresponding\:angles)

\sf \to \cancel{\frac{1}{2}}\angle ABQ=\cancel{\frac{1}{2}}\angle BCS

\sf \to \angle ABQ=\angle BCS

\sf \boxed{\therefore PQ\parallel RS}

Thanks for asking!! :)

Answered by Anonymous
1

Step-by-step explanation:

Solution!!

\sf \large To\:prove:Toprove:

\sf \to PQ\parallel RS→PQ∥RS

\sf \large Now,Now,

\sf \to \angle ABE=\frac{1}{2}\angle ABQ→∠ABE=

2

1

∠ABQ

\sf \to \angle BCG=\frac{1}{2}\angle BCS→∠BCG=

2

1

∠BCS

\sf \to BE\parallel CG→BE∥CG

\sf \therefore \angle ABE=\angle BCG\quad (Corresponding\:angles)∴∠ABE=∠BCG(Correspondingangles)

\sf \to \cancel{\frac{1}{2}}\angle ABQ=\cancel{\frac{1}{2}}\angle BCS→

2

1

∠ABQ=

2

1

∠BCS

\sf \to \angle ABQ=\angle BCS→∠ABQ=∠BCS

\sf \boxed{\therefore PQ\parallel RS}

∴PQ∥RS

Similar questions