Math, asked by akshaykumar2050, 1 month ago

If a trapezoid has a height of 10cm and sides of 7 and 8 cm, what is its area?

Answers

Answered by sia1234567
42

  \huge\underline{\sf{given}}

  \star \: \bold{height = 10 \: cm} \\  \star \:  \bold{base} \: \tiny{1} \:  \small\bold{= 8 \: cm }\\   \star \:  \bold{base \:  \tiny{2} \:  \small\bold{ = 7 \: cm}}

 \huge \underline{\sf{find}}

 \bigstar \:   \red{\underline\bold{area \: of \: trapezoid}}

 \huge\mathfrak{steps}

  \underline{\dagger \:  \sf{first \: know \: the \: formulae - }}

   \purple{\leadsto\bold{area =  \frac{a + b}{2}h}}

 \sf \green{\mapsto \: area =  \frac{8 + 7}{2} \: 10} \\  \\  \sf \green{\mapsto \: area =  \frac{15}{2} \times 10  =  \frac{150}{2}  = 75}

 \blacktriangleright   \bold\pink{\: so \: area \: of \: trapezoid =  \fbox{75}}

_______________________________

   \bigstar \: \underline\bold{some \: more \: formulae}

 \sf \star \: area \: of \: rectangle = l \times b

 \sf \star \: area \: of \: square =  {a}^{2}

 \sf \star \: area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)}

 \sf \star \: area \: of \: triangle =  \frac{1}{2}  \times b \times h

  \sf\star \: area \: of \: parallelogram = b \times h

________________________________

Answered by Anonymous
94

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{Given:}}}}}}}\end{gathered}

  •  \dashrightarrow{\sf{{B_1}  \: of \: trapezoid = 7m}}
  •  \dashrightarrow{\sf{{B_2}  \: of \: trapezoid = 8 \: cm}}
  • \dashrightarrow{\sf{Height  \: of \:  trapezoid = 10 cm}}

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{To Find :}}}}}}}\end{gathered}

  • \dashrightarrow{\sf{Area \:  of \:  Trapezoid}}

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{Using Formula:}}}}}}}\end{gathered}

{\dag{\underline{\boxed{\sf{Area \:  of  \: Trapezoid = \bigg\{\dfrac{1}{2}  \times h({B_1}  +  {B_2})\bigg\}}}}}}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{Solution:}}}}}}}\end{gathered}

\bigstar{\underline{\underline{\frak{\red{\pmb{Finding  \: the \:  area \:  by  \: using  \: formula}}}}}}

 \quad{:\implies{\sf{Area \:  of  \: Trapezoid ={\bf\dfrac{1}{2}  \times h({B_1}  +  {B_2})}}}}

  • Substituting the values

 \quad{:\implies{\sf{Area \:  of  \: Trapezoid ={\bf\dfrac{1}{2}  \times 10({7}  +  {8})}}}}

 \quad{:\implies{\sf{Area \:  of  \: Trapezoid ={\bf\dfrac{10}{2}({15})}}}}

 \quad{:\implies{\sf{Area \:  of  \: Trapezoid ={\bf\dfrac{10}{2} \times {15}}}}}

 \quad{:\implies{\sf{Area \:  of  \: Trapezoid ={\bf{\cancel{\dfrac{10}{2}} \times {15}}}}}}

 \quad{:\implies{\sf{Area \:  of  \: Trapezoid ={\bf{5}\times {15}}}}}

 \quad{:\implies{\sf{Area \:  of  \: Trapezoid ={\bf{75 \:  {cm}^{2} }}}}}

{\dag{\underline{\boxed{\rm{\color{purple}{Area \:  of  \: Trapezoid =  75 \: {cm}^{2}}}}}}}

  • Henceforth,The Area of Trapezoid is 75 cm²

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{green}{Learn More :}}}}}}}\end{gathered}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto CSA \: of \: sphere \: = \: 2 \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SA \: of \: sphere \: = \: 4 \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto TSA \: of \: sphere \: = \: 3 \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Diameter \: of \: circle \: = \: 2r}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Radius \: of \: circle \: = \: \dfrac{d}{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Volume \: of \: sphere \: = \: \dfrac{4}{3} \pi r^{3}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: circle = \: \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Circumference \: of \: circle \: = \: 2 \pi r}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Diameter \: of \: circle \: = \: 2r}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: rectangle \: = \: Length \times Breadth}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: rectangle \: = \:2(length+breadth)}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: square \: = \: 4 \times sides}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: square \: = \: Side \times Side}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: triangle \: = \: \dfrac{1}{2} \times breadth \times height}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: paralloelogram \: = \: Breadth \times Height}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: circle \: = \: \pi b^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: triangle \: = \: (1st \: + \: 2nd \: + 3rd) \: side}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: paralloelogram \: = \: 2(a+b)}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Volume \: of \: cylinder \: = \: \pi r^{2}h}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Surface \: area \: of \: cylinder \: = \: 2 \pi rh + 2 \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Lateral \: area \: of \: cylinder \: = \: 2 \pi rh}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Base \: area \: of \: cylinder \: = \: \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Height \: of \: cylinder \: = \: \dfrac{v}{\pi r^{2}}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Radius \: of \: cylinder \: = \:\sqrt \frac{v}{\pi h}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto TSA \: of \: cuboid \: = \: 2(l \times b + b \times h + l \times h}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto LSA \: of \: cuboid \: = \: 2h(l+b)}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Volume \: of \: cuboid \: = \: L \times B \times H}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Diagonal \: of \: cuboid \: = \: \sqrt 3l}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: cuboid \: = \: 12 \times Sides}}}

Similar questions