if a triangle is given by 19a=b+c,then find the value of cot[b/2]cot[c/2]
Answers
Answer:
Given : b+c = 3a
According to the half range formula, Cot\frac { B }{ 2 } =\sqrt { \frac { (s-a)(s-c) }{ s(s-b) } }Cot2B=s(s−b)(s−a)(s−c)
Cot\frac { C }{ 2 } =\sqrt { \frac { (s-a)(s-b) }{ s(s-c) } }Cot2C=s(s−c)(s−a)(s−b)
We know that {\frac{(a+b+c)}{2}} = s2(a+b+c)=s , given that b + c = 3a
S = {\frac{( a + 3a )}{2}} ={\frac{ 4a}{ 2}} = 2aS=2(a+3a)=24a=2a
Cot\frac { B }{ 2 } Cot\frac { C }{ 2 } = \sqrt { \frac { (s-a)(s-c) }{s(s-b) } } \times \sqrt { \frac { (s-a)(s-b) }{ s(s-c) } }Cot2BCot2C=s(s−b)(s−a)(s−c)×s(s−c)(s−a)(s−b)
= \sqrt { \frac { (2a-a)(2a-c) }{ 2a(2a-b) } } \times \quad \sqrt { \frac { (2a-a)(2a-b) }{ 2a(2a-c) } }=2a(2a−b)(2a−a)(2a−c)×2a(2a−c)(2a−a)(2a−b)
= 2
Therefore, Cot\frac { B }{ 2 } Cot\frac { C }{ 2 } = 2Cot2BCot2C=2
The value of cot[b/2]cot[c/2] is 10/9.
Given:
A triangle is given by 19a=b+c.
To Find:
The value of cot[b/2]cot[c/2].
Solution:
From the trigonometric properties, and
Multiply the above-written formulas.
Also, .
From 19a=b+c, substitute the value of 'b+c' into and simplify.
Now substitute s=10a into equation (1) and simplify.
Thus, the value of cot[b/2]cot[c/2] is 10/9.
#SPJ3