If a two digit no is 3 more than 4 times the sum of digits and if 18 is added to the no, digits are reversed . Find the no.
Answers
Answered by
8
Let the digit in one's place be x and the digit in ten's place be be y.
Hence, the original number = 10x + y.
Given that A two digit number is 3 more than 4 times the sum of digits.
⇒ 10x + y = 3 + 4(x + y)
⇒ 10x + y = 3 + 4x + 4y
⇒ 6x - 3y = 3
⇒ 2x - y = 1 ----- (1)
Given that if 18 is added to the original number, then the digits are reversed.
⇒ 10x + y + 18 = 10y + x
⇒ 9x - 9y = -18
⇒ x - y = -2 ------ (2)
On solving (1) & (2), we get
⇒ 2x - y = 1
⇒ x - y = -2
----------------
x = 3
Substitute x = 3 in (1), we get
⇒ 2x - y = 1
⇒ 2(3) - y = 1
⇒ 6 - y = 1
⇒ y = 5.
Hence, the original number :
⇒ 10x + y
⇒ 10(3) + 5
⇒ 35.
Therefore, the original number = 35.
Hope this helps!
siddhartharao77:
:-)
Answered by
14
Here is your solution
Let,
The digit in ones place be x
Tens place be y Original number = 10y+x
Number formed by reversing the digits = 10+y
Given:-
10y + x = 4(x + y) + 3
⇒ 10y + x − 4x − 4y = 3
⇒ 6y− 3x= 3
⇒ 2y − x= 1 ..........(1)
Also,
Given that when 18 is added to the number the digits gets interchanged.
Hence
(10y + x) + 18 = 10x + y
⇒ 9x − 9y = 18
⇒ x − y = 2 ....... (2)
Adding (1) and (2),
we get
2y− x+x-y = 1+2
y = 3
Put y=3
in x − y = 2,
we get
x − 3 = 2
∴ x = 5
Original Number = (10y +x)
= (10×3+ 5 )
= 35
Let,
The digit in ones place be x
Tens place be y Original number = 10y+x
Number formed by reversing the digits = 10+y
Given:-
10y + x = 4(x + y) + 3
⇒ 10y + x − 4x − 4y = 3
⇒ 6y− 3x= 3
⇒ 2y − x= 1 ..........(1)
Also,
Given that when 18 is added to the number the digits gets interchanged.
Hence
(10y + x) + 18 = 10x + y
⇒ 9x − 9y = 18
⇒ x − y = 2 ....... (2)
Adding (1) and (2),
we get
2y− x+x-y = 1+2
y = 3
Put y=3
in x − y = 2,
we get
x − 3 = 2
∴ x = 5
Original Number = (10y +x)
= (10×3+ 5 )
= 35
Similar questions