Math, asked by amansunbeam92p77teh, 1 year ago

If a = under root 3 - under root 2 upon under root + under root 2 and b = under root 3 + under root 2 upon under root 3 - under root 2 , Find the value of a2 + b2 -5ab.

Attachments:

Answers

Answered by DaIncredible
10
Hey friend,
Here is the answer you were looking for:
a =  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}   -  \sqrt{2} }  \\  \\ using \: the \: identities \:  \\  {(a  - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\ (a + b)(a  - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{2}) }^{2}   - 2 \times  \sqrt{3} \times  \sqrt{2}  }{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\  =  \frac{3 + 2 - 2 \sqrt{6} }{3 - 2}  \\  \\ a = 5 - 2 \sqrt{6}  \\  \\ b =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}   +  \sqrt{2} } \\  \\ using \: the \: identities \\  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {( \sqrt{3}) }^{2}  +  {( \sqrt{2} )}^{2} + 2 \times  \sqrt{3} \times  \sqrt{2}   }{ {( \sqrt{3}) }^{2} -  {( \sqrt{2} )}^{2}  }  \\  \\  =  \frac{3 + 2 + 2 \sqrt{6} }{3 - 2}  \\  \\ b = 5 + 2 \sqrt{6}  \\  \\  {a}^{2}  +  {b}^{2}  - 5ab \\  \\ (5 - 2 \sqrt{6} )^{2}  +  {(5 + 2 \sqrt{6} )}^{2}  - 5(5 - 2 \sqrt{6} )(5 +  2\sqrt{6} ) \\  \\ using \: same \: identities \\  \\  = ( {(5)}^{2}  +  {(2 \sqrt{6} )}^{2}  - 2 \times 5 \times 2 \sqrt{6} ) + ( {(5)}^{2}  +  {(2 \sqrt{6} )}^{2}  + 2 \times 5 \times 2 \sqrt{6} ) - 5( {(5)}^{2}  -  {(2 \sqrt{6}) }^{2} ) \\  \\  = (25 + 24 - 20 \sqrt{6} ) + (25 + 24 + 20 \sqrt{6} ) - 5(25 - 24) \\  \\  = (49 - 20 \sqrt{6} ) + (49 + 20 \sqrt{6} ) - 5(1) \\  \\  = 49 - 20 \sqrt{6}  + 49 + 20 \sqrt{6}  - 5 \\  \\  = 49 + 49 - 5 \\ ( - 20 \sqrt{6}   \: and \:   + 20 \sqrt{6}  \: got \: cancel) \\  \\  = 98 - 5 \\  \\  = 93

Hope this helps!!!

@Mahak24

Thanks....
Similar questions