Math, asked by dray5183, 3 months ago

if a=underoot2 +1 , then find the value of (a-1/a^2)

Answers

Answered by varagadepranay
1

Step-by-step explanation:

Given that,

a=2+

3

Then, Value of

a−

a

1

=2+

3

2+

3

1

=2+

3

2+

3

1

×

2−

3

2−

3

onrationalize

=2+

3

4−3

(2−

3

)

=2+

3

−2+

3

=2

3

Hence, this is the answer

Answered by Anonymous
4

a =  \sqrt{2}  + 1 \\ therefore \\  \frac{1}{a} =  \frac{1}{ \sqrt{2} + 1 }  \\ rationalazing \: the \:  \\ denominator \:  \sqrt{2}  + 1 \\ we \: get \:  \\  \frac{1}{a}  =  \frac{1}{ \sqrt{2}  + 1}  \times  \frac{ \sqrt{2} - 1 }{ \sqrt{2} - 1 }  \\  \frac{1}{a}  =  \frac{ \sqrt{2} - 1}{( \sqrt{2} + 1)( \sqrt{2}  - 1)  }  \\  \frac{1}{a}  =  \frac{ \sqrt{2} }{ (\sqrt{2} {}^{2}) -  ( {1}^{2} ) }  \\  \frac{1}{a}  =  \frac{ \sqrt{2} - 1 }{2 - 1}  =  \sqrt{2}  - 1 \\ therefore \\ a -  \frac{1}{a}  = ( \sqrt{2}  + 1) - ( \sqrt{2} - 1)  \\ a -  \frac{1}{a}  =  \sqrt{2}  + 1 -  \sqrt{2}  + 1 = 2 \\  {( \frac{a - 1}{a}) }^{2}  =  {(2)}^{2}  = 4 \\ hence \\  ( { \frac{a - 1}{a}) }^{2}  = 4

Hope it helps u

#NAWABZAADI

Similar questions