if A union B = A intersection B, prove that A = B
Answers
Answered by
2
Suppose x∈Ax∈A, then x∈A∪Bx∈A∪B. So then x∈A∩Bx∈A∩B.
Thus x∈Bx∈B and thus A⊆BA⊆B
Suppose x∈Bx∈B, then x∈A∪Bx∈A∪B. So then x∈A∩Bx∈A∩B.
Thus x∈Ax∈A and thus B⊆AB⊆A
Therefore, A=B
《 Or, In another way 》
A⊂A∪B=A∩B⊂A
and
B⊂A∪B=A∩B⊂B.
Therefore,
A=A∪B=A∩B=B.
__________________
Hope it helps :)
Answered by
8
We have,
A−(A∩B)A−(A∩B)
=A∩(A∩B)c=A∩(A∩B)c
[∵[∵ For two non-empty sets XX and Y,Y,
X−Y=X∩Yc,X−Y=X∩Yc, ‘c’ denotes complement set.]]
=A∩(Ac∪Bc)=A∩(Ac∪Bc) [De-Morgan's Law.]
=(A∩Ac)∪(A∩Bc)=(A∩Ac)∪(A∩Bc) [Distributive Law.]
=∅∪(A−B)=∅∪(A−B)
=A−B.=A−B. [Identity Law.]†
plz mark me brainlist
Similar questions