Physics, asked by aditya94732, 1 month ago

if a vector = 2 unit and b vector = 4 unit and angle between both vector is 60 degree then find the magnitude of resultant vector.​

Answers

Answered by gonuprakash
0

\tt\small\underline\purple{Let:-}

Let:−

\rm{The\: numerator\:_{(fraction)}=x}Thenumerator

(fraction)

=x

\rm{The\: denominator\:_{(fraction)}=y}Thedenominator

(fraction)

=y

\rm{The\: Orginal\: fraction\:_{(fraction)}=\frac{x}{y}}TheOrginalfraction

(fraction)

=

y

x

\tt\small\underline\purple{To\: Find:-}

ToFind:−

\rm{The\: Orginal\: fraction\:_{(fraction)}=?}TheOrginalfraction

(fraction)

=?

\tt\small\underline\purple{Solution:-}

Solution:−

To calculate orginal fraction, at first we have to set up equation. By helping clue in the question.

\sf\small\underline\orange{Calculation\:for\:1st\: equation:-}

Calculationfor1stequation:−

\tt{\longrightarrow Numerator=Denominator-5}⟶Numerator=Denominator−5

\tt{\longrightarrow x = y - 5}⟶x=y−5

\tt{\longrightarrow x = y - 5-------(i)}⟶x=y−5−−−−−−−(i)

\sf\small\underline\orange{Calculation\:for\:2nd\: equation:-}

Calculationfor2ndequation:−

\tt{\longrightarrow \dfrac{Numerator+3}{Denominator+3}=\dfrac{4}{5}}⟶

Denominator+3

Numerator+3

=

5

4

\tt{\longrightarrow \dfrac{x + 3}{y + 3}=\dfrac{4}{5}}⟶

y+3

x+3

=

5

4

\tt{\longrightarrow 5(x + 3) = 4(y + 3)}⟶5(x+3)=4(y+3)

\tt{\longrightarrow 5x + 15 = 4y + 12}⟶5x+15=4y+12

\tt{\longrightarrow 5x - 4y = 12 - 15}⟶5x−4y=12−15

\tt{\longrightarrow 5x - 4y = - 3--------(ii)}⟶5x−4y=−3−−−−−−−−(ii)

Substituting x = y - 5 in equation (i) :-]

\tt{\longrightarrow 5(y - 5) - 4y = - 3}⟶5(y−5)−4y=−3

\tt{\longrightarrow 5y - 25 - 4y = - 3}⟶5y−25−4y=−3

\tt{\longrightarrow y = 22}⟶y=22

Putting y = 22 in equation (I) :-]

\tt{\longrightarrow x = y - 5}⟶x=y−5

\tt{\longrightarrow x = 22 - 5}⟶x=22−5

\tt{\longrightarrow x = 17}⟶x=17

\sf\small\underline\pink{Hence,\:the\: orginal\: fraction\:_{(fraction)}\:(x/y) = \frac{17}{22}}

Hence,theorginalfraction

(fraction)

(x/y)=

22

17

Similar questions