if a vector = 2 unit and b vector = 4 unit and angle between both vector is 60 degree then find the magnitude of resultant vector.
Answers
\tt\small\underline\purple{Let:-}
Let:−
\rm{The\: numerator\:_{(fraction)}=x}Thenumerator
(fraction)
=x
\rm{The\: denominator\:_{(fraction)}=y}Thedenominator
(fraction)
=y
\rm{The\: Orginal\: fraction\:_{(fraction)}=\frac{x}{y}}TheOrginalfraction
(fraction)
=
y
x
\tt\small\underline\purple{To\: Find:-}
ToFind:−
\rm{The\: Orginal\: fraction\:_{(fraction)}=?}TheOrginalfraction
(fraction)
=?
\tt\small\underline\purple{Solution:-}
Solution:−
To calculate orginal fraction, at first we have to set up equation. By helping clue in the question.
\sf\small\underline\orange{Calculation\:for\:1st\: equation:-}
Calculationfor1stequation:−
\tt{\longrightarrow Numerator=Denominator-5}⟶Numerator=Denominator−5
\tt{\longrightarrow x = y - 5}⟶x=y−5
\tt{\longrightarrow x = y - 5-------(i)}⟶x=y−5−−−−−−−(i)
\sf\small\underline\orange{Calculation\:for\:2nd\: equation:-}
Calculationfor2ndequation:−
\tt{\longrightarrow \dfrac{Numerator+3}{Denominator+3}=\dfrac{4}{5}}⟶
Denominator+3
Numerator+3
=
5
4
\tt{\longrightarrow \dfrac{x + 3}{y + 3}=\dfrac{4}{5}}⟶
y+3
x+3
=
5
4
\tt{\longrightarrow 5(x + 3) = 4(y + 3)}⟶5(x+3)=4(y+3)
\tt{\longrightarrow 5x + 15 = 4y + 12}⟶5x+15=4y+12
\tt{\longrightarrow 5x - 4y = 12 - 15}⟶5x−4y=12−15
\tt{\longrightarrow 5x - 4y = - 3--------(ii)}⟶5x−4y=−3−−−−−−−−(ii)
Substituting x = y - 5 in equation (i) :-]
\tt{\longrightarrow 5(y - 5) - 4y = - 3}⟶5(y−5)−4y=−3
\tt{\longrightarrow 5y - 25 - 4y = - 3}⟶5y−25−4y=−3
\tt{\longrightarrow y = 22}⟶y=22
Putting y = 22 in equation (I) :-]
\tt{\longrightarrow x = y - 5}⟶x=y−5
\tt{\longrightarrow x = 22 - 5}⟶x=22−5
\tt{\longrightarrow x = 17}⟶x=17
\sf\small\underline\pink{Hence,\:the\: orginal\: fraction\:_{(fraction)}\:(x/y) = \frac{17}{22}}
Hence,theorginalfraction
(fraction)
(x/y)=
22
17