Physics, asked by tanishka785, 8 months ago

If a vector 2i^ +3j^+8k^ is perpendicular to the vector 4j^_4i^+xk^ then find the value of x

plz answer fast without any SPAM plz..!!!!!​

Answers

Answered by Anonymous
42

Answer:

 \boxed{\mathfrak{x = - \dfrac{1}{2}}}

Given:

 \rm \overrightarrow{A} = 2 \hat{i} + 3 \hat{j} + 8 \hat{k} \\  \\  \rm \overrightarrow{B} =  - 4 \hat{i} + 4 \hat{j} + x \hat{k}  \\   \\  \rm  A \perp B

Explanation:

Dot product of two perpendicular vector is equal to zero.

 \rm \implies \overrightarrow{A}.\overrightarrow{B}  = 0 \\  \\  \rm \implies (2 \hat{i} + 3 \hat{j} + 8 \hat{k}). (- 4 \hat{i} + 4 \hat{j} + x \hat{k})   = 0 \\  \\ \rm \implies  - 8 + 12 + 8x = 0 \\  \\ \rm \implies 4 + 8x = 0 \\  \\ \rm \implies 8x =  - 4 \\  \\ \rm \implies x =  -  \frac{4}{8}  \\  \\ \rm \implies x =  -  \frac{1}{2}

Answered by crook39
13

Answer:

(2i + 3j + 8k).(4j - 4i + xk) = 0

-8 + 12 + 8x = 0

x = -4/8

x = -1/2

x = -0.5

Similar questions