Physics, asked by Deepesh424, 9 months ago

If A vector = 2i cap +4j cap - 5k cap . find the direction of cosines of the vector A​.​

Answers

Answered by swayamkumar987
1

Answer:

vector a is a giant si it is wrong question

Answered by amitkumar44481
2

Question :

If A Vector is

 \:  \:  \:  \: \tt \vec{A} = 2 \hat{i} + 4 \hat{j} - 5 \hat{k}.

Find the direction of Cosine of the Vector A.

AnsWer :

 \tt \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \frac{2}{ 3\sqrt{5} }  \: , \:  \frac{4}{3 \sqrt{5} }  \: , \:  \frac{ - 5}{4 \sqrt{5} } .

Formula Use :

     \red \star \:  \tt \vec{A}  = magnitude.direction.\\ \tt \red \star \: \vec{A} =  |A| . \hat{A}.  \\  \tt \red \star \:  \hat{A} =  \frac{ \vec{A}}{ |A| } . \\

Calculation :

 \:  \:  \:  \:  \tt\vec{A} = 2 \hat{i} + 4 \hat{j} - 5 \hat{k}.

 \leadsto \tt \hat{A} =  \frac{ \vec{A}}{ |A| }  \\  \leadsto \tt \hat{A} =  \frac{ 2 \hat{i} + 4 \hat{j} - 5 \hat{k}}{  \sqrt{ {2}^{2}  + {4}^{2}  +  { (- 5)}^{2}  }    }

  \leadsto \tt \hat{A} =  \frac{ 2 \hat{i} + 4 \hat{j} - 5 \hat{k}}{ \sqrt{45}}  \\   \leadsto \tt \hat{A} =  \frac{ 2 \hat{i} + 4 \hat{j} - 5 \hat{k}}{ 3\sqrt{5}}

Now,

Coefficient of Cosine is,

 \tt \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \frac{2}{ 3\sqrt{5} }  \: , \:  \frac{4}{3 \sqrt{5} }  \: , \:  \frac{ - 5}{4 \sqrt{5} } .

Therefore, the direction of Cosine for Vector A is,

 \tt \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \frac{2}{ 3\sqrt{5} }  \:  ,\:  \frac{4}{3 \sqrt{5} }  \: , \:  \frac{ - 5}{4 \sqrt{5} } .

Similar questions